# Datasheet # Ortustech COM22H2P80ULC OR-20-047 The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice. (1/3/) Customer's Approval Issue:Feb.14,2022 This product is under development and specifications are subject to change. # **Specifications for** # **Blanview TFT-LCD Monitor (TENTATIVE)** ( 2.2" QVGA 240 x RGB x 320 Portrait) Version 0.1 (Please be sure to check the specifications latest version.) MODEL COM22H2P80ULC | Signature : | | |-------------|----------------------------------------| | Name : | | | Section: | | | Title : | | | Date : | | | ORTUSTECH | TOPPAN INC. | | | Electronics Division Ortus Subdivision | | | Approved by | | | Checked by | | | Prepared by | | | | | TOPPAN INC. | | (2/3/) # SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # Version History | Ver. | Date | Page | | Description | |-------------|-----------|----------|---------|------------------------| | 0.0 | 2021.12.3 | - | - | Tentative issue | | 0.1 | 2022.2.14 | | | 5. Block Diagram | | , | | P.11 | Correct | Error correct | | <u>A</u> ×5 | | | | 10.1 Power ON Sequence | | | | P.18,19 | Correct | DCX,IB[7:0],Remarks | | | | 1 .10,10 | Conco | 10.2 Refresh Sequence | | | | D 20 21 | Corroct | | | | | P.20,21 | Correct | DCX,IB[7:0],Remarks | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | | (3/37) # SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # Contents | 1. | Application | • • • • • • • • • | 4 | |----|---------------------------------------------|-----------------------------------------|----| | 2. | Outline Specifications | | | | | 2.1 Features of the Product | | 5 | | | 2.2 Display Method | | 5 | | 3. | Dimensions and Shape | | | | | 3.1 Dimensions | | 7 | | | 3.2 Outward Form | | 8 | | | 3.3 Serial № print (S-print) | | 9 | | 4. | Pin Assignment | | 10 | | | Block Diagram | | 11 | | | Absolute Maximum Rating | | 12 | | | Recommended Operating Conditions | | 13 | | | Electrical Characteristics | | | | ٠. | 8.1 DC Characteristics | | 13 | | | 8.2 AC Characteristics | | 14 | | a | Interface | | | | ٥. | 9.1 Interface Mode | | 16 | | | 9.2 System interface timing | | 17 | | Λ | Sequence | | | | Ο. | 10.1 Power ON Sequence | | 18 | | | 10.1 Power ON Sequence | | 20 | | | • | | 22 | | | 10.3 Sleep IN Sequence | | 22 | | | 10.4 Sleep OUT Sequence | | | | | 10.5 Power OFF Sequence | | 22 | | | 10.6 Power Supply ON Sequence | • • • • • • • • • • | 23 | | | 10.7 Power Supply OFF Sequence | • • • • • • • • • | 23 | | | LED Driving Circuit | • • • • • • • • • | 23 | | 2. | Characteristics | | _ | | | 12.1 Optical Characteristics | • • • • • • • • • • • • • • • • • • • • | 24 | | | 12.2 Temperature Characteristics | • • • • • • • • • • | 25 | | _ | 12.3 Service Life Of Backlight | • • • • • • • • • • | 25 | | 3. | Criteria of Judgment | | | | | 13.1 Defective Display and Screen Quality | • • • • • • • • • • | 26 | | | 13.2 Screen and Other Appearance | • • • • • • • • • • | 27 | | | Reliability Test | • • • • • • • • • • | 28 | | | Packing Specifications | • • • • • • • • • • • • • • • • • • • • | 30 | | 6. | Handling Instruction | | | | | 16.1 Cautions for Handling LCD panels | • • • • • • • • • • • • • • • • • • • • | 31 | | | 16.2 Precautions for Handling | • • • • • • • • • | 32 | | | 16.3 Precautions for Operation | • • • • • • • • • | 32 | | | 16.4 Storage Condition for Shipping Cartons | • • • • • • • • • | 33 | | | 16.5 Precautions for Peeling off | | | | | the Protective film | • • • • • • • • • • • • • • • • • • • • | 34 | | | 16.6 Warranty | ••••• | 34 | | ΑI | PPENDIX | | 35 | | | | | | #### SPECIFICATIONS № 21TLM081 1. Application This Specification is applicable to 56.4 mm (2.2 inch) Blanview TFT-LCD monitor for non-military use. - © TOPPAN makes no warranty or assume no liability that use of this Product and/or any information including drawings in this Specification by Purchaser is not infringing any patent or other intellectual property rights owned by third parties, and TOPPAN shall not grant to Purchaser any right to use any patent or other intellectual property rights owned by third parties. Since this Specification contains TOPPAN's confidential information and copy right, Purchaser shall use them with high degree of care to prevent any unauthorized use, disclosure, duplication, publication or dissemination of TOPPAN's confidential information and copy right. - O If Purchaser intends to use this Products for an application which requires higher level of reliability and/or safety in functionality and/or accuracy such as transport equipment (aircraft, train, automobile, etc.), disaster-prevention/security equipment or various safety equipment, Purchaser shall consult TOPPAN on such use in advance. - This Product shall not be used for application which requires extremely higher level of reliability and/or safety such as aerospace equipment, telecommunication equipment for trunk lines, control equipment for nuclear facilities or life-support medical equipment. - It must be noted as an mechanical design manner, especial attention in housing design to prevent arcuation/flexure caused by stress to the LCD module shall be considered. - TOPPAN assumes no liability for any damage resulting from misuse, abuse, and/or miss-operation of the Product deviating from the operating conditions and precautions described in the Specification. - It shall be mutually conferred if nonconforming defect which result from unspecified cause in this specification arises. - If any issue arises as to information provided in this Specification or any other information, TOPPAN and Purchaser shall discuss them in good faith and seek solution. - TOPPAN assumes no liability for defects such as electrostatic discharge failure occurred during peeling off the protective film or Purchaser's assembly process. This Product is compatible for RoHS(2.0) directive. | Object substance | Maximum content [ppm] | |----------------------------------------------------|-----------------------| | Cadmium and its compound | 100 | | Hexavalent Chromium Compound | 1000 | | Lead & Lead compound | 1000 | | Mercury & Mercury compound | 1000 | | Polybrominated biphenyl series (PBB series) | 1000 | | Polybrominated biphenyl ether series (PBDE series) | 1000 | | Bis(2-ethylhexyl)phthalate series(DEHP series) | 1000 | | Butyl benzyl phthalate series(BBP series) | 1000 | | Dibutyl phthalate series(DBP series) | 1000 | | Diisobutyl phthalate series(DIBP series) | 1000 | # 2. Outline Specifications #### 2.1 Features of the Product - 2.2 inch diagonal display, 240 x RGB [H] x 320 [V] dots. - 6-bit / 262,144 colors. - Single power supply 2.8V - Timing generator [TG], Counter-electrode driving circuitry, Built-in power supply circuit. - High bright white LED back-light. #### 2.2 Display Method | Items Specifications | | Remarks | |----------------------|-------------------------------------------------|----------------------------| | Display type | VA 262,144 colors. | | | | Blanview, Normally black. | | | Product description | LCD monitor with internal CPU interface circuit | | | Driving method | a-Si TFT Active matrix. | | | | Line-scanning, Non-interlace. | | | Dot arrangement | RGB stripe arrangement. | Refer to "Dot arrangement" | | Signal input method | System interface with 18 bit bus width | | | Backlight | High brightness LED, side light | | | NTSC ratio | 35% | | Dot arrangement (FPC cable placed right side) (0/3/) #### SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 #### <Features of Blanview> - Backlight power consumption required to assure visibility. (equivalent to 3.5"QVGA) Contrast characteristics under 100,000lx. (same condition as direct sunlight.) With better contrast (higher contrast ratio), Blanview TFT-LCD has the best outdoor readability in three different types of TFT-LCD. Below chart shows contrast value against panel surface brightness. (Horizontal: Panel surface brightness/Vertical: Contrast value) LCD panel has enough outdoor readability above our Standard line. (TOPPAN criteria) (1/37) # SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # 3. Dimensions and Shape # 3.1 Dimensions | Items | Specifications | Unit | Remarks | |-----------------------------------|------------------------------|------|---------------------| | Outline dimensions | 38.64[H] × 53.72[V] ×2.35[D] | mm | Exclude FPC cable | | Active area | 33.84[H] × 45.12[V] | mm | Diagonal: 2.22 inch | | Number of dots | 240 × RGB [H] × 320[V] | dot | | | Dot pitch | 47[H] × 141[V] | um | | | Surface hardness of the polarizer | 3 | Н | Load:2.0N | | Weight | 11 | g | Include FPC cable | # 3.3 Serial № print (S-print) # 3.3.1 Display Items S-print indicates the least significant digit of manufacture year (1digit), manufacture month with below alphabet (1letter), model code (5characters), serial number (6digits). #### \* Contents of Display | * | * | **** | **** | |---|---|------|------| | _ | _ | | | | а | b | С | d | | | Contents of display | | | | | | | | | |---|--------------------------|-------------------------------------------------|-------|-------|--|--|--|--|--| | а | The least significant di | The least significant digit of manufacture year | | | | | | | | | b | Manufacture month | onth Jan-A May-E Sep-I | | | | | | | | | | | Feb-B Jun-F Oct-J | | | | | | | | | | | Mar-C Jul-G Nov-K | | | | | | | | | | | Apr-D | Aug-H | Dec-L | | | | | | | С | Model code | 22DDC (Made in Japa | n) | | | | | | | | | | 22DEC (Made in Malaysia) | | | | | | | | | | | | | | | | | | | | d | Serial number | | | | | | | | | - \* Example of indication of Serial № print (S-print) - · Made in Japan 2L22DDC000125 means "manufactured in December 2022, 2.2" DD type, C specifications, serial number 000125" ·Made in Malaysia 2L22DEC000125 means "manufactured in December 2022, 2.2" DE type, C specifications, serial number 000125" 3.3.2 Location of Serial № print (S-print) Refer to 3.2 "Outward Form". #### 3.3.3 Others Please note that it is likely to disappear with an organic solvent about the Serial print. (10/37) # SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # 4. Pin Assignment | No. | Symbol | Details | Remark | 10 | |-----|--------|-------------------------------------------|----------------------------------|----| | 1 | TE | Frame Synchronizing Signal Output for LCD | | 0 | | 2 | LED+ | LED anode | | Р | | 3 | LED- | LED cathode | | Р | | 4 | VDD | Power Supply for logic regulater | | Р | | 5 | GND | Ground | | Р | | 6 | NC | Non connection | | - | | 7 | IM0 | Interface select signal | | | | 8 | CSX | Chip select signal | L: Selected , H: Not selected | | | 9 | WRX | Write Signal | | | | 10 | GND | Ground | | Р | | 11 | DB1 | Data Input & Output | | 10 | | 12 | DB3 | Data Input & Output | | 10 | | 13 | DB5 | Data Input & Output | | 10 | | 14 | DB6 | Data Input & Output | | 10 | | 15 | DB8 | Data Input & Output | | 10 | | 16 | DB10 | Data Input & Output | | 10 | | 17 | GND | Ground | | Р | | 18 | DB13 | Data Input & Output | | 10 | | 19 | DB15 | Data Input & Output | | 10 | | 20 | DB17 | Data Input & Output | | 10 | | 21 | GND | Ground | | Р | | 22 | LED+ | LED anode | | Р | | 23 | LED- | LED cathode | | Р | | 24 | IOVCC | Power Supply for interface Circuit | | Р | | 25 | NC | Non connection | | - | | 26 | IM3 | Interface select signal | | | | 27 | RESX | Reset signal | L:Initialize | | | 28 | DCX | Select the register | L: Command , H: Parameter / Data | | | 29 | RDX | Read Signal | | | | 30 | DB0 | Data Input & Output | | 10 | | 31 | DB2 | Data Input & Output | | 10 | | 32 | DB4 | Data Input & Output | | 10 | | 33 | GND | Ground | | Р | | 34 | DB7 | Data Input & Output | | 10 | | 35 | DB9 | Data Input & Output | | 10 | | 36 | DB11 | Data Input & Output | | 10 | | 37 | DB12 | Data Input & Output | | 10 | | 38 | DB14 | Data Input & Output | | 10 | | 39 | DB16 | Data Input & Output | | 10 | | 40 | GND | Ground | | Р | # 6. Absolute Maximum Rating | Item | Symbol | Condition | Ra | ting | Unit | Applicable terminal | | |---------------------------|----------|-----------------------------------|------|-----------|-------|-------------------------------------------|--| | nem | Syllibol | Condition | MIN | MAX | Offic | Applicable terminal | | | Supply voltage | VDD | | -0.3 | 4.6 | ٧ | VDD | | | Logic interface voltage | IOVCC | Ta = 25 °C | -0.3 | 4.6 | ٧ | IOVCC | | | Input voltage for logic | VI | | -0.3 | VCCIO+0.3 | ٧ | RESX,CSX,DCX,WRX,<br>RDX,IM3,IM0,DB[17:0] | | | LED Forward current | L | Ta = 25 °C | - | 35 | mA | LED+ - LED- | | | ELD I OIWAIG CUITEIR | 1 | Ta = 70 °C | - | 15 | mA | | | | Storage temperature range | Tstg | | -30 | 80 | °C | | | | Storage humidity range | Hstg | Non condensing moisture at or les | | | | | | Note: Do not exceed Allowable Forward Current shown on the chart below. # 7. Recommended Operating Conditions | Item | Symbol | Condition | | Rating | | Unit | Applicable terminal | | |-------------------------------|--------|---------------------|------|-------------------------------|-------|--------------|-------------------------------------------|--| | item | Symbol | Condition | MIN | TYP | MAX | Offic | Applicable terrilinal | | | Supply voltage | VDD | | 2.7 | 2.8 | 3.3 | ٧ | VDD | | | Logic interface voltage | IOVCC | Ta=-20∼70°C | 1.7 | 2.8 | 3.3 | ٧ | IOVCC | | | Input voltage for logic | VI | | 0 | | IOVCC | ٧ | RESX,CSX,DCX,WRX,<br>RDX,IM3,IM0,DB[17:0] | | | LED Forward current | IL | Ta=-20∼70°C | - | 5.0 | 20.0 | mA | LED+ - LED- | | | LED Forward voltage | VL | Ta=25°C<br>IL=5.0mA | 7.62 | 8.07 | 8.40 | ٧ | TLED+ - LED- | | | Operational temperature range | Тор | Note1 | -20 | 25 | 70 | $^{\circ}$ C | Panel surface temperature | | | Operating humidity | Нор | Ta≦30°C | 20 | _ | 80 | % | | | | range | ПОР | Ta>30°C | I | nsing in an e<br>or less thar | | | | | Note1: This monitor is operatable in this temperature range. With regard to optical characteristics, refer to Item 12."Characteristics". ## 8. Electrical Characteristics #### 8.1 DC Characteristics (Unless otherwise noted, Ta=25 °C,VDD=IOVCC=2.8V) | Item | Symbol | Condition | | Rating | | Unit | Applicable terminal | |----------------------|--------|-----------------------------------|-----------|--------|-----------|----------|------------------------------| | item | Symbol | Condition | MIN | TYP | MAX | Offic | Applicable terminal | | Input Signal | VIH | IOVCC-1 7-3 3V | 0.7×IOVCC | | IOVCC | ٧ | RESX,CSX,DCX, | | Voltage | VIL | IOVCC=1.7-3.3V | 0 | | 0.3×IOVCC | ٧ | WRX,RDX,IM3,<br>IM0,DB[17:0] | | Output Signal | VOH | IOH = -0.1mA | 0.8×IOVCC | | | <b>V</b> | DB[17:0],TE | | Voltage | VOL | IOL = 0.1mA | | | 0.2×IOVCC | > | DB[17.0],12 | | Operating<br>Current | IDD | Color bar display | _ | (6.5) | (13.0) | mA | VDD + IOVCC | | Stand-by<br>Current | IDDS | Other input with constant voltage | _ | - | (40.0) | μΑ | VDD + IOVCC | # SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 8.2 AC Characteristics (Unless otherwise noted, Ta=25 °C, VDD=IOVCC=2.8V) | | | (Onle | ss otherwise | notea, | [a=25 °C,VDD=10VCC=2.8V] | |--------------------------------|----------|-------|--------------|--------|--------------------------| | Item | Symbol | Ra | ting | Unit | | | Item | Syllibol | MIN | MAX | Offic | | | Address setup time | TAST | 0 | | ns | DCX | | Address hold time | ТАНТ | 10 | | ns | | | Chip select "H" pulse width | TCHW | 0 | | ns | | | Chip select setup time (write) | TCS | 15 | | ns | 1 | | Chip select setup time (Read) | TRCS | 355 | | ns | COV | | Chip select wait time | TCSF | 10 | | ns | CSX | | Chip select hold time | TCSH | 10 | | ns | | | Write cycle | TWC | 66 | | ns | | | Read cycle | TRC | 450 | | ns | 1 | | WRX pulse "H" duration | TWRH | 15 | | ns | WRXRDX | | RDX pulse "H" duration | TRDH | 90 | | ns | WHANDA | | WRX pulse "L" duration | TWRL | 15 | | ns | | | RDX pulse "L" duration | TRDL | 355 | | ns | | | Data setup time | TDST | 10 | | ns | DB[17:0](write) | | Data hold time | TDHT | 10 | | ns | DB[17.0](Write) | | Read data delay time | TDDR | | 340 | ns | DR[17:0](road) | | Read data hold time | TDHR | 20 | 80 | ns | DB[17:0](read) | | Rising / Falling time | TR/TF | | 15 | ns | DCX,CSX,WRX,DB[17:0] | TOPPAN INC. (15/57) (Unless otherwise noted, Ta=25 °C,VDD=IOVCC=2.8V) | Item | Symbol | Rat | ting | Unit | Remarks | |----------------------------|--------|-----|------|------|-----------------------| | | Cymbol | MIN | MAX | Orne | Homano | | Reset Rejected Pulse width | TRREJ | 1 | 5 | us | | | Reset Pulse duration | TRW | 10 | ı | us | | | Reset time | TRT | - | 5 | ms | during Sleep-IN mode | | neset time | INI | - | 120 | ms | during Sleep-OUT mode | #### 9. Interface #### 9.1 Interface Mode The following figure illustrates the relationship between data on GRAM and display data through each interface. a. 18bit interface (IM3=0,IM0=1,3Ah 1st=06h,B0h 2nd=E0h) 262K color | Input pins | |-------------| | Instruction | | data | | _ | | - , | . , , , | | | , <u> </u> | | · / | | | | | | | | | | | |---|------|------|---------|------|------|------------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | DB17 | DB16 | DB15 | DB14 | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | | * | * | * | * | * | * | * | * | * | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 | * | | | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | B4 | B3 | B2 | B1 | B0 | b. 16bit interface 1-transfer mode (IM3=0,IM0=0,3Ah\_1st=05h,B0h\_2nd=E0h) 65K color | Input | pins | |--------|-------| | Instru | ction | | data | | | • | 1 1141 | 101011 | 11000 | (11410- | 0,11010- | -0,071 | | -0011,2 | | | , | | | | | | 0011 | COIOI | |---|--------|--------|-------|---------|----------|--------|------|---------|-----|-----|-----|-----|-------|-----|-----|-----|------|-------| | | DB17 | DB16 | DB15 | DB14 | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | | * | * | * | * | * | * | * | * | * | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 | * | | | R5/R0 | R4 | R3 | R2 | R1 | G5 | G4 | G3 | * | G2 | G1 | G0 | B5/B0 | B4 | B3 | B2 | B1 | * | c. 16bit interface\_2-transfer mode -1 (IM3=0,IM0=0,3Ah\_1st=06h,B0h\_2nd=E3h) 262K color | Input p | ins | |---------|------| | Instruc | tion | | data | 1st | | | | | | ١ | . , | , | _ | | | _ | | | | | | | | | |-----|------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | ins | DB17 | DB16 | DB15 | DB14 | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | ion | * | * | * | * | * | * | * | * | * | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 | * | | 1st | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | * | G3 | G2 | G1 | G0 | B5 | B4 | В3 | B2 | * | | 2nd | B1 | B0 | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | d. 16bit interface 2-transfer mode -2 (IM3=0,IM0=0,3Ah\_1st=06h,B0h\_2nd=E2h) | Input p | ins | DB17 | DB16 | DB15 | DB14 | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | |---------|------|------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Instruc | tion | * | * | * | * | * | * | * | * | * | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 | * | | data | 1st | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | R5 | R4 | * | | | 2nd | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | * | G1 | G0 | B5 | B4 | B3 | B2 | B1 | B0 | * | e. 9bit interface 2-transfer mode (IM3=1,IM0=1,3Ah\_1st=06h,B0h\_2nd=E0h) 262K color | Input p | ins | |---------|------| | Instruc | tion | | data | 1st | | | 2nd | | - +- + | 4.4. | | | , | . , | | , | _ | | 7 | | | | | | | | |--------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | DB17 | DB16 | DB15 | DB14 | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 | * | * | * | * | * | * | * | * | * | * | | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | * | * | * | * | * | * | * | * | * | | G2 | G1 | G0 | B5 | B4 | B3 | B2 | B1 | B0 | * | * | * | * | * | * | * | * | * | f. 8bit interface 2-transfer mode (IM3=1,IM0=0,3Ah\_1st=05h,B0h\_2nd=E0h) 65K color | Input | pin | s | |--------|-------|-----| | Instru | ıctic | n | | data | | 1st | | | | 2nd | | DB17 | DB16 | DB15 | DB14 | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | |-------|------|------|-------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 | * | * | * | * | * | * | * | * | * | * | | R5/R0 | R4 | R3 | R2 | R1 | G5 | G4 | G3 | * | * | * | * | * | * | * | * | * | * | | G2 | G1 | G0 | B5/B0 | B4 | В3 | B2 | B1 | * | * | * | * | * | * | * | * | * | * | g. 8bit interface 3-transfer mode (IM3=1,IM0=0,3Ah\_1st=06h,B0h\_2nd=E0h) 262K color | Input p | ins | |---------|------| | Instruc | tion | | data | 1st | | | 2nd | | | 3rd | | | DB17 | DB16 | DB15 | DB14 | DB13 | DB12 | DB11 | DB10 | DB9 | DB8 | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | |---|------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | IB7 | IB6 | IB5 | IB4 | IB3 | IB2 | IB1 | IB0 | * | * | * | * | * | * | * | * | * | * | | | R5 | R4 | R3 | R2 | R1 | R0 | * | * | * | * | * | * | * | * | * | * | * | * | | ł | G5 | G4 | G3 | G2 | G1 | G0 | * | * | * | * | * | * | * | * | * | * | * | * | | | B5 | B4 | B3 | B2 | B1 | B0 | * | * | * | * | * | * | * | * | * | * | * | * | (17/37)SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 9.2 System interface timing Send registers and data in accordance with the following transfer format. a) Write to register CSX DCX WRX RDX Command Parameter DB[17:0] b) Write to GRAM CSX DCX WRX RDXR 2Ch/3Ch 1st data 2nd data 3rd data 4th data DB[17:0] c) Read from register CSX DCX WRX RDXRD command DB[17:0] dummy ead para\_ ead para\_ d) Read from GRAM CSX DCX WRX RDXR 2Eh/3Eh DB[17:0] 1st data 2nd data dummy TOPPAN INC. (10/37) SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 \_\_10 ∕₄ 10. Sequence # 10.1 Power ON Sequence (1/2) | No. | | DCX | IB[7:0] | Remarks ( 1/2 ) | |------|-----------------------|-----|---------|------------------------------| | 140. | VDD/IOVCC ON | DOX | 16[7.0] | nemarks | | | RESX High | | | (RESX High) can be omitted | | | RESX High → Low | | | (NESA High) can be diffitted | | - | Wait 5 msec | | | | | | | | | | | - | RESX Low → High | | | | | | Wait 120 msec | | 11 5 | | | ' | Sleep Out | 0 | 11 h | | | | Wait 120 msec | | 00.1- | | | 2 | Memory access control | 0 | 36 h | 10/ 10/ 0 | | | para 1 | 1 | 00 h | MX=MY=0 | | 3 | LCM Control | 0 | C0 h | | | | para 1 | + | 3C h | XINV=XMV=XMX=XBGR=1 | | 4 | Pixel format | 0 | 3A h | | | | para 1 | 1 | 05 h | 3h:4K,5h:65K,6h:260K | | 5 | CMD2EN | 0 | DF h | | | | para 1 | 1 | 5A h | | | | para 2 | 1 | 69 h | | | | para 3 | 1 | 02 h | | | | para 4 | 1 | 01 h | Command2 enable | | 6 | GATECTRL 1 | 0 | E4 h | | | ı | para 1 | 1 | 27 h | NL=320 | | l | para 2 | 1 | 00 h | SCN=G0 | | | para 3 | | 10 h | TMG=1,SM=GS=0 | | 7 | GATECTRL 2 | 0 | B7 h | | | l | para 1 | 1 | 75 h | VGH=14.9,VGL=-10.4 | | 8 | VCOMS setting | 0 | BB h | | | | para 1 | 1 | 15 h | Δv=0.625typ | | 9 | VAP/VAN signal | 0 | D2 h | | | Ť | para 1 | 1 | 4C h | | | 10 | VRH set | 0 | C3 h | | | | para 1 | 1 | 17 h | VAP=4.7+ | | 11 | Frame rate | 0 | C6 h | | | | para 1 | 1 | EF h | Column inversion,60Hz | | 12 | Power control 1 | 0 | D0 h | 901011111 111V0101011,00112 | | '- | para 1 | 1 | A4 h | | | ŀ | para 1 | 1 1 | A4 II | | | 13 | Positive gamma | 0 | E0 h | | | 13 | | 1 | F0 h | | | | para 1 | 1 | 04 h | | | | para 2 | | | | | | para 3 | | 0B h | | | | para 4 | | 11 h | | | | para 5 | | 10 h | | | | para 6 | | 1B h | | | | para 7 | | 2F h | | | | para 8 | | 33 h | | | | para 9 | | 40 h | | | | para 10 | | 27 h | | | | para 11 | 1 | 17 h | | (19/37) SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 | | | | | ( 2/2 ) | |------------|-----------------------|----------|--------------|--------------------------| | No. | | DCX | IB[7:0] | Remarks | | l ∟ | para 12 | 1 | 14 h | | | l ∟ | para 13 | 1 | 19 h | | | l ∟ | para 14 | 1 | 23 h | | | | Wait 10 msec | | | | | 14 _ | Negative gamma | 0 | E1 h | | | l ⊢ | para 1 | 1 | F0 h | | | l ⊢ | para 2 | 1 | 04 h | | | l ⊢ | para 3 | 1 | 0B h | | | l ⊢ | para 4 | 1 | 11 h | | | l ⊢ | para 5 | 1 | 10 h | | | l ⊢ | para 6 | 1 | 1B h | | | l ⊢ | para 7 | 1 | 2F h | | | l ⊢ | para 8 | 1 | 33 h | | | l ⊢ | para 9 | 1 | 40 h | | | | para 10 | 1 | 27 h | | | | para 11 | 1 | 17 h | | | | para 12 | 1 | 14 h | | | | para 13 | 1 | 19 h | | | | para 14 | 1 | 23 h | | | 45 | Wait 10 msec | | F0 !- | | | 15 | Equalize control | 0 | E9 h | | | ⊢ | para 1 | 1 | 08 h | | | l ⊢ | para 2 | 1 | 08 h | | | 10 | para 3 | <u> </u> | 08 h | | | 16 | RGB interface control | 0 | B1 h | | | l ⊢ | para 1 | 1 | 00 h | | | l ⊢ | para 2 | 1 | 04 h<br>14 h | | | 17 | para 3<br>RAM Control | 0 | B0 h | | | '′ | para 1 | 1 | 00 h | RM=0,DM=00:CPU interface | | l ⊢ | para 1 | 1 | E0 h | EPF=10b | | 18 | CA SET | 0 | 2A h | LFT=100 | | l '° ⊢ | para 1 | 1 | 00 h | XS[15:8] | | l ⊢ | para 2 | <u>'</u> | 00 h | XS[7:0] | | l ⊢ | para 3 | 1 | 00 h | XE[15:8] | | <b> </b> - | para 4 | 1 | EF h | XE[7:0] | | 19 | RA SET | 0 | 2B h | \_[] | | `` | para 1 | 1 | 00 h | YS[15:8] | | | para 2 | 1 | 00 h | YS[7:0] | | - | para 3 | 1 | 01 h | YE[15:8] | | - | para 4 | 1 | 3F h | YE[7:0] | | 20 | Tearing Effect On | 0 | 35 h | | | - | para 1 | 1 | 00 h | TEM = 0 | | 21 | RAMWR | 0 | 2C h | | | ∣ ⊢ | data 1 | 1 | **** h | write data | | | data 2 | 1 | **** h | write data | | | • • • • | | • • • • h | | | | data n | 1 | **** h | write data | | | wait 10 msec | | | | | 22 | Display ON | 0 | 29 h | | | | wait 10 msec | | | | | 23 | Backlight ON | | | | (20/37) SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 10.2 Refresh Sequence To prevent false operation by static electricity and such, please refresh register setting as follows regularly. | No. | | DCX | IB[7:0] | Remarks | |-----|-----------------------|-----|---------|-----------------------| | 1 | Sleep Out | 0 | 11 h | | | | Wait 120 msec | | | | | 2 | Memory access control | 0 | 36 h | | | | para 1 | 1 | 00 h | MX=MY=0 | | 3 | LCM Control | 0 | C0 h | | | | para 1 | 1 | 3C h | XINV=XMV=XMX=XBGR=1 | | 4 | Pixel format | 0 | 3A h | | | | para 1 | 1 | 05 h | 3h:4K,5h:65K,6h:260K | | 5 | CMD2EN | 0 | DF h | | | | para 1 | 1 | 5A h | | | | para 2 | 1 | 69 h | | | | para 3 | 1 | 02 h | | | | para 4 | 1 | 01 h | Command2 enable | | 6 | GATECTRL 1 | 0 | E4 h | | | | para 1 | 1 | 27 h | NL=320 | | | para 2 | 1 | 00 h | SCN=G0 | | | para 3 | 1 | 10 h | TMG=1,SM=GS=0 | | 7 | GATECTRL 2 | 0 | B7 h | | | | para 1 | 1 | 75 h | VGH=14.9,VGL=-10.4 | | 8 | VCOMS setting | 0 | BB h | | | | para 1 | 1 | 15 h | Δv=0.625typ | | 9 | VAP/VAN signal | 0 | D2 h | | | | para 1 | 1 | 4C h | | | 10 | VRH set | 0 | C3 h | | | | para 1 | 1 | 17 h | VAP=4.7+ | | 11 | Frame rate | 0 | C6 h | | | | para 1 | 1 | EF h | Column inversion,60Hz | | 12 | Power control 1 | 0 | D0 h | | | | para 1 | 1 | A4 h | | | | para 2 | 1 | A1 h | | | 13 | Positive gamma | 0 | E0 h | | | | para 1 | 1 | F0 h | | | | para 2 | 1 | 04 h | | | | para 3 | 1 | 0B h | | | | para 4 | 1 | 11 h | | | [ | para 5 | 1 | 10 h | | | [ | para 6 | 1 | 1B h | | | [ | para 7 | 1 | 2F h | | | | para 8 | 1 | 33 h | | | [ | para 9 | | 40 h | | | | para 10 | 1 | 27 h | | | | para 11 | 1 | 17 h | | (21/3/) SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 | No. I | | DCV | I ID(7.01 | ( 2/2 ) | |----------------|-----------------------|-----|-----------------|--------------------------| | No. | para 12 | DCX | IB[7:0]<br>14 h | Remarks | | ŀ | · | 1 | 19 h | | | ŀ | para 13<br>para 14 | 1 | 23 h | | | ŀ | Wait 10 msec | ı | 2311 | | | 14 | Negative gamma | 0 | E1 h | | | ' <sup>4</sup> | | 1 | F0 h | | | ŀ | para 1 | 1 | 04 h | | | ŀ | para 2<br>para 3 | 1 | 04 II | | | | · | 1 | 11 h | | | ŀ | para 4 | 1 | 10 h | | | ŀ | para 5 | 1 | 1B h | | | ŀ | para 6 | 1 | 2F h | | | - } | para 7 | 1 | | | | ŀ | para 8 | 1 | 33 h | | | - } | para 9 | 1 | 40 h<br>27 h | | | | para 10<br>para 11 | 1 | 17 h | | | | · | 1 | | | | - | para 12 | 1 | 14 h | | | - 1 | para 13 | 1 | 19 h | | | | para 14 | I | 23 h | | | 15 | Wait 10 msec | 0 | F0 h | | | 15 | Equalize control | 0 | E9 h | | | - 1 | para 1 | 1 | 08 h | | | | para 2 | 1 | 08 h | | | 40 | para 3 | 1 | 08 h | | | 16 | RGB interface control | 0 | B1 h | | | | para 1 | 1 | 00 h | | | | para 2 | 1 | 04 h | | | 47 | para 3 | 1 | 14 h | | | 17 | RAM Control | 0 | B0 h | D14 0 D14 00 0D111 1 1 | | | para 1 | 1 | 00 h | RM=0,DM=00:CPU interface | | 40 | para 2 | 1 | E0 h | EPF=10b | | 18 | CA SET | 0 | 2A h | V0[4 E.0] | | - | para 1 | 1 | 00 h | XS[15:8] | | - | para 2 | 1 | 00 h | XS[7:0] | | - | para 3 | 1 | 00 h | XE[15:8] | | 40 | para 4 | 1 | EF h | XE[7:0] | | 19 | RA SET | 0 | 2B h | VOI = 01 | | | para 1 | 1 | 00 h | YS[15:8] | | | para 2 | 1 | 00 h | YS[7:0] | | | para 3 | 1 | 01 h | YE[15:8] | | | para 4 | 1 | 3F h | YE[7:0] | | 20 | Tearing Effect On | 0 | 35 h | TEM 6 | | | para 1 | 1 | 00 h | TEM = 0 | | 21 | RAMWR | 0 | 2C h | | | | data 1 | 1 | **** h | write data | | | data 2 | 1 | **** h | write data | | ]. | **** | ••• | • • • • h | | | ]. | data n | 1 | **** h | write data | | | wait 10 msec | | | | | 22 | Display ON | 0 | 29 h | | | | wait 10 msec | | | | | 23 | Backlight ON | | | | (22/37) # SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # 10.3 Sleep IN Sequence | No. | | DCX | IB[7:0] | Remarks | |-----|---------------|-----|---------|---------| | 1 | Backlight OFF | | | | | 2 | Display OFF | 0 | 28 h | | | | Wait 10 msec | | | | | 3 | Sleep In | 0 | 10 h | | | | | | | | # 10.4 Sleep OUT Sequence | No. | | DCX | IB[7:0] | Remarks | |-----|---------------|-----|---------|---------| | 1 | Sleep Out | 0 | 11 h | | | | Wait 120 msec | | | | | 2 | Display ON | 0 | 29 h | | | | Wait 50 msec | | | | | 3 | Backlight ON | | | | # 10.5 Power OFF Sequence | No. | | DCX | IB[7:0] | Remarks | |-----|-----------------|-----|---------|---------| | 1 | Backlight OFF | | | | | 2 | Display OFF | 0 | 28 h | | | | Wait 10 msec | | | | | 3 | Sleep In | 0 | 10 h | | | | Wait 120 msec | | | | | 4 | RESX High → Low | | | | | 5 | VDD/IOVCC OFF | | | | (23/37) ## SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # 10.6 Power Supply ON Sequence We recommend that you supplied at the same time VDD and IOVCC. However, there is no problem even if the supply IOVCC later than VDD. Please release the reset from at least 1ms after each power supply. # 10.7 Power Supply OFF Sequence We recommend that you removed at the same time VDD and IOVCC. However, there is no problem even if IOVCC OFF faster than VDD. # 11. LED Driving Circuit #### 12. Characteristics # 12.1 Optical Characteristics (Measurement Condition) Measuring instruments: CS2000 (KONICA MINOLTA), LCD7200 (OTSUKA ELECTRONICS), EZcontrastXL88 (ELDIM) Driving condition: VDD=IOVCC=2.8V, Optimized VCOMDC $Backlight: \ IL=5.0 \ mA$ $Measured \ temperature: \ Ta=25 ^{\circ}C$ | | Item | Symbol | Condition | MIN | TYP | MAX | Unit | Note № | Remark | |-------------------|-----------------------------|------------------|-------------------------|----------|------------|------------|----------|--------|--------| | Response<br>time | Rise time<br>+<br>Fall time | TON<br>+<br>TOFF | [Data]=<br>00h ←→ 3Fh | - | - | (100) | ms | 1 | | | Contrast<br>ratio | Backlight ON | CR | [Data]=<br>3Fh / 00h | (TBD) | (800) | - | | 2 | | | Con | Backlight OFF | | | - | (TBD) | - | | | | | | Left | θL | [Data]= | - | (80) | - | deg | 3 | | | Viewing angle | Right | θR | 3Fh / 00h | - | (80) | - | deg | ] | | | /je/ | Up | φU | CR ≧ 10 | - | (80) | - | deg | ] | | | | Down | φD | | - | (80) | - | deg | | | | White | e Chromaticity | x<br>y | [Data]= 3Fh | White ch | romaticit | ty range | 4 | | | | Cente | Center Brightness | | [Data]= 3Fh | (280) | (400) | - | cd/m² | 5 | | | Brigh | Brightness distribution | | [Data]= 3Fh | (70) | - | - | % | 6 | | | Burn- | ·in | | | No notic | eable bu | rn-in ima | ge shall | 7 | | | | | | | be obse | rved after | r (2) hour | s of | | | | | | | | window | pattern | display. | | | | | * * 1 - 1 | | | ADDENIDIV of "Deference | | | | | | 10 ( " | <sup>\*</sup> Note number 1 to 7: Refer to the APPENDIX of "Reference Method for Measuring Optical Characteristics and Performance". (White Chromaticity Range) | Х | у | | | | | |---------|---------|--|--|--|--| | (0.260) | (0.265) | | | | | | (0.345) | (0.265) | | | | | | (0.375) | (0.295) | | | | | | (0.375) | (0.365) | | | | | | (0.285) | (0.365) | | | | | | (0.260) | (0.335) | | | | | White Chromaticity Range (23/37) #### SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # 12.2 Temperature Characteristics (Measurement Condition) Measuring instruments: CS2000 (KONICA MINOLTA), LCD7200 (OTSUKA ELECTRONICS) Driving condition: VDD=IOVCC=2.8V, Optimized VCOMDC Backlight: IL= 5.0 mA | Item | | Symbol | Specification | | Remark | |-----------------|-----------|--------|----------------------------------------------|-------------------|--------------| | | | | Ta = (-20) °C | Ta = (70) °C | | | Response time | Rise time | TON | (500) msec or less | (80) msec or less | | | | + | + | | | | | | Fall time | TOFF | | | | | | | | | | | | Contrast ratio | | CR | (200) or more | (200) or more | Backlight ON | | | | | | | | | Display Quality | | | No noticeable display defect or ununiformity | | | | | | | should be observed. | | | ## 12.3 Service Life Of Backlight #### <Definition> When the center luminance drops to 50% of the initial value, the back light is considered to have reached the end of its effective service life. Backlight: IL= 5.0 mA | | Average life | Ambient temperature | |------------------|--------------|---------------------| | Continuously lit | 50,000 hrs | 25 ± 5 °C | Average life means the period which the survival rate falls under 50%. #### SPECIFICATIONS № 21TLM081 #### Issue:Feb.14,2022 # 13. Criteria of Judgment # 13.1 Defective Display and Screen Quality Test Condition: Observed TFT-LCD monitor from front during operation with the following conditions Driving Signal: Raster Patter (RGB, white, black) Signal condition: [Data]:00h, 2Ah, 3Fh (3steps) Observation distance: 30 cm Illuminance: 200 to 350 lx Backlight: IL=5.0mA | D | Defect item Defect content | | | Criteria | | |------------|----------------------------|------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|--| | | Line<br>defect | Black, white or color line, 3 or more neighboring defective dots | | Not exists | | | <u>≥</u> | Dot | Uneven brightness or | dot-by-dot base due to defective | Refer to table 1 | | | [¤ | Dot<br>defect | TFT or CF, or dust is | counted as dot defect | | | | | | (brighter dot, darker d | ot) | | | | Display | | High bright dot: Visibl | e through 2% ND filter at [Data]=00h | | | | | | Low bright dot: Visible | e through 5% ND filter at [Data]=00h | | | | | | Dark dot: Appear dark through white display at [Data]=2Ah | | | | | | | Invisible through 5% ND filter at [Data]=00h | | Acceptable | | | Г | Stain | Uneven brightness (w | hite stain, black stain etc) | Invisible through 5% ND filter at Black screen. | | | | | | | Invisible through 1% ND filter at other screen. | | | I <u>≧</u> | Foreign | Point-like | 0.25mm< φ | N=0 | | | Ϊa | Foreign<br>particle | | $0.20$ mm< $\phi \leq 0.25$ mm | N≦2 | | | | | | φ ≦0.20mm | Acceptable | | | Screen | 9 | Liner | 3.0mm < length and 0.08mm < width | N=0 | | | ြတ္တ | | | length $\leq$ 3.0mm or width $\leq$ 0.08mm | Acceptable | | | | Others | | | Use boundary sample | | | L | | | | for judgment when necessary | | $\phi$ (mm): Average diameter = (major axis + minor axis)/2 Permissible number: N #### Table1 | TableT | | | | | | | |--------|--------|--------|------|-------|----------------------------------------------------------|--| | | High | Low | Dark | | | | | Area | bright | bright | dot | Total | Criteria | | | | dot | dot | | | | | | Α | 0 | 2 | 2 | 3 | Permissible distance between same color bright dots | | | | | | | | (includes neighboring dots): 3 mm or more | | | В | 2 | 4 | 4 | 5 | Permissible distance between same color high bright dots | | | | | | | | (includes neighboring dots): 5 mm or more | | | Total | 2 | 4 | 4 | 5 | | | | | | | | | | | #### <Portrait model> Division of A and B areas B area: Active area Dimensional ratio between A and B areas: 1: 4: 1 (Refer to the left figure) (2//3/) # SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # 13.2 Screen and Other Appearance Testing conditions Observation distance: 30 cm Illuminance: 1200 $\sim$ 2000 lx | | Item | Criteria | Remark | | |------|----------------------------------|---------------------------------------------------|-----------------------------------------|--| | | Flaw | Ignore invisible defect when the backlight is on. | Applicable area: Active area only | | | 7 | Stain | | (Refer to the section 3.2 Outward Form) | | | rize | Dirt | | | | | olal | Stain Dirt Bubble Foreign matter | | | | | ٩ | Foreign matter | | | | | | Dent | | | | | S | case | No functional defect occurs | | | | | | | | | | FF | oC . | No functional defect occurs | | | | | | | | | | Item | Appearance | Criteria | |----------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Glass chipping | Corner area | $Unit:mm$ $a \leqq 3$ $b \leqq 3$ $c \leqq t \qquad (t: glass thickness)$ $a,b \leqq 0.5 \text{ is acceptable}$ $n \leqq 2$ | | | Others Progressive crack | Unit: mm $a \le 5$ $b \le 1$ $c \le t \qquad (t: glass thickness)$ $a,b \le 0.5 \text{ is acceptable}$ $Maximum permissible number$ of chipping off on a side is 5. $None$ | (20/37) # SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # 14. Reliability Test | | Test item | Test condition | | number of failures / | |--------------------------|------------------------------|-----------------------------------------------------|------------------------------------------|------------------------| | | | | | number of examinations | | | High temperature storage | Ta = 80°C | 240hrs | TBD | | | Low temperature storage | Ta = -30°C | 240hrs | TBD | | | High temperature & | Ta = 60°C, RH = 90%, | 240hrs | TBD | | test | high humidity storage | non condensing | * | | | | High temperature operation | Tp = 70°C | 240hrs | TBD | | Durability | Low temperature operation | Tp = -20°C | 240hrs | TBD | | | High temperature & | Tp = 40°C, RH = 90%, | 240hrs | TBD | | △ | high humidity operation | non condensing | * | | | | Thermal shock storage | -30°C ↔ 80°C (30min / 30min) | 100cycles | TBD | | | Lightfastness | Xenon Blackpanel 63±3°C non-sho | wer | TBD | | | | 450W/m <sup>2</sup> (300~700nm) non-operate | ting Integral dose 800MJ/m² | | | | Electrostatic discharge test | Confirms to EIAJ ED-4701/300, C=200pF,R=0Ω,V=±200V | | TBD | | | (Non operation) | Each 3 times of discharge on and p | oower supply | | | | | and other terminals. | | | | est | Surface discharge test | C=250pF, R=100Ω, V=±(8)kV | TBD | | | 1= - | (Non operation) | Each 5 times of discharge in both polarities | | | | anik | | on the center of screen with the cas | | | | Mechanica<br>ironmental | Vibration test | Total amplitude 1.5mm, f=10~55H | TBD | | | Mechanica<br>vironmental | | X,Y,Z directions for each 2 hours | | | | e l | Impact test | Use TOPPAN original jig (see next | page) and | TBD | | | | make an impact with peak accelera | ation of 1000m/s <sup>2</sup> for 6 msec | | | | | with half sine-curve at 3 times to ea | ach X, Y, Z directions | | | | | in conformance with JIS C 60068-2 | -27-2011. | | | | Packing vibration-proof test | Acceleration of 19.6m/s <sup>2</sup> with frequence | ency of 10→55→10Hz, | TBD | | acking | | X,Y, Zdirection for each 30 minutes | <b>3.</b> | | | ac<br>te | Packing drop test | Drop from 75cm high. | | TBD | | ۵ | | 1 time to each 6 surfaces, 3 edges, | , 1 corner | | | Noto | Ta-ambient temperature | Tn-Panel temperature | | | Note:Ta=ambient temperature Tp=Panel temperature $\divideontimes$ The profile of high temperature/humidity storage and High Temperature/humidity operation (Pure water of over 10M $\Omega$ ·cm shall be used.) (29/37) # SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 # Table2. Reliability Criteria The parameters should be measured after leaving the monitor at the ordinary temperature for 24 hours or more after the test completion. | Item | Standard | Remark | |-----------------|-----------------------------------------------|--------------| | Display quality | No visible abnormality shall be seen. | | | | (Except for unevenness by Pol deterioration.) | | | Contrast ratio | 200 or more | Backlight ON | | | | | # **TOPPAN Original Jig** #### 13. Packing Specifications Step 2. Each tray filled with products is to be piled up in stack of 5. One empty tray is to be put on the top of stack of 5 trays. Step 3. 2 packs of moisture absorbers are to be placed on the top tray as shown in the drawing. Put piled trays into a sealing bag. Step 4. Vacuum and seal the bag with the vacuum sealing machine. Step 5. The pilled trays are to be wrapped with a bubble cushioning sheet, and to be fixed with adhesive tape. Step 6. A corrugated board is to be placed in the bottom of an outer carton. The wrapped trays are to be put on the corrugated board in the outer carton. Another corrugated board is to be placed on the top of the inserted carton box. Step 7. The outer carton is to be sealed in H-shape with packing tape as shown in the drawing. The model number, quantity of products, and shipping date are to be printed on the 2 opposite side of the outer carton with black ink. If necessary, shipping labels or impression markings are to be put on the outer carton. Step 8. The outer carton is to be inserted into a extra outer carton with same direction. The extra outer carton needs to sealed with in H-shape with packing tape as shown in the drawing. Step 9. The model number, quantity of products, and shipping date are to be printed on the 2 opposite sides of the extra outer carton with black ink. If necessary, shipping labels or impression markings are to be put on the extra outer carton. Remark: The return of packing materials is not required. | Packing item name | Specs., Material | | |--------------------|-----------------------------|--| | ① Tray | A-PET(Antistatic) | | | ② Foam sheet | Antistatic Polyethylene | | | ③ B sheet A | Antistatic air bubble sheet | | | Inner board | Corrugated cardboard | | | ⑤ Sealing bag | | | | 6 Drier | Moisture absorber | | | ⑦ Packing tape | | | | Outer carton | Corrugated cardboard | | | Extra outer carton | Corrugated cardboard | | | Dimension of extra outer carton | | | |------------------------------------|-------------|--| | D : Approx. | ( 337mm ) | | | W : Approx. | ( 618mm ) | | | H : Approx. | ( 179mm ) | | | Quantity of products packed in one | carton: 210 | | | Gross weight : Approx. | 5.0kg | | SPECIFICATIONS № 21TLM081 #### 16. Handling Instruction #### 16.1 Cautions for Handling LCD panels # Caution - (1) Do not make an impact on the LCD panel glass because it may break and you may get injured from it. - (2) If the glass breaks, do not touch it with bare hands. (Fragment of broken glass may stick you or you cut yourself on it. - (3) If you get injured, receive adequate first aid and consult a medial doctor. - (4) Do not let liquid crystal get into your mouth. (If the LCD panel glass breaks, try not let liquid crystal get into your mouth even toxic property of liquid crystal has not been confirmed.) - (5) If liquid crystal adheres, rinse it out thoroughly. (If liquid crystal adheres to your cloth or skin, wipe it off with rubbing alcohol or wash it thoroughly with soap. If liquid crystal gets into eyes, rinse it with clean water for at least 15 minutes and consult an eye doctor. - (6) If you scrap this products, follow a disposal standard of industrial waste that is legally valid in the community, country or territory where you reside. - (7) Do not connect or disconnect this product while its application products is powered on. - (8) Do not attempt to disassemble or modify this product as it is precision component. - (9) If a part of soldering part has been exposed, and avoid contact (short-circuit) with a metallic part of the case etc. about FPC of this model, please. Please insulate it with the insulating tape etc. if necessary. The defective operation is caused, and there is a possibility to generation of heat and the ignition. - (10) Since excess current protection circuit is not built in this TFT module, there is the possibility that LCD module or peripheral circuit become feverish and burned in case abnormal operation is generated. We recommend you to add excess current protection circuit to power supply. #### Caution This mark is used to indicate a precaution or an instruction which, if not correctly observed, may result in bodily injury, or material damages alone. (32/37) SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 #### 16.2 Precautions for Handling Wear finger tips at incoming inspection and for handling the TFT monitors to keep display quality and keep the working area clean. Do not touch the surface of the monitor as it is easily scratched. - Wear grounded wrist-straps and use electrostatic neutralization blowers to prevent static charge and discharge when handling the TFT monitors as the LED in this TFT monitors is damageable to electrostatic discharge. Designate an appropriate operating area, and set equipment, tools, and machines properly when handling this product. - Avoid strong mechanical shock including knocking, hitting or dropping to the TFT monitors for protecting their glass parts. Do not use the TFT monitors that have been experienced dropping or strong mechanical shock. - 4) Do not use or storage the TFT monitors at high temperature and high humidity environment. Particularly, never use or storage the TFT monitors at a location where condensation builds up. - 5) Avoid using and storing TFT monitors at a location where they are exposed to direct sunlight or ultraviolet rays to prevent the LCD panels from deterioration by ultraviolet rays. - 6) Do not stain or damage the contacts of the FPC cable. FPC cable needs to be inserted until it can reach to the end of connector slot. During insertion, make sure to keep the cable in a horizontal position to avoid an oblique insertion. Otherwise, it may cause poor contact or deteriorate reliability of the FPC cable. - 7) The FPC cable is a design very weak to the bend and the pull as it is fixed with the tape. Do not bend or pull the FPC cable or carry the TFT monitor by holding the FPC cable. - 8) Peel off the protective film on the TFT monitors during mounting process. Refer to the section 16.5 on how to peel off the protective film. We are not responsible for electrostatic discharge failures or other defects occur when peeling off the protective film. - 9) It is recommended to employ the structure of which polarizer peripheral area of LCD panel being pressed by cushioning materials, in order to prevent a cause of display brightness unevenness. #### 16.3 Precautions for Operation - Since this TFT monitors are not equipped with light shielding for the driver IC, do not expose the driver IC to strong lights during operation as it may cause functional failures. - In case of powering up or powering off this LCD module, be sure to comply the sequence as instructed in this specification. - Do not plug in or out the FPC cable while power supply is switch on. Plug the FPC cable in and out while power supply is switched off. - 4) Do not operate the TFT monitors in the strong magnetic field. It may break the TFT monitors. - 5) Do not display a fixed image on the screen for a long time. Use a screen-saver or other measures to avoid a fixed image displayed on the screen for a long time. Otherwise, it may cause burn-in image on the screen due the characteristics of liquid crystal. (33/37) ## SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 #### 16.4 Storage Condition for Shipping Cartons (Storage environment) Temperature 0 to 40°C Humidity 60%RH or less No-condensing occurs under low temperature with high humidity condition. Atmosphere No poisonous gas that can erode electronic components and/or wiring materials should be detected. Time period 1 year Unpacking To prevent damages caused by static electricity, anti-static precautionary measures (e.g. earthing, anti-static mat) should be implemented. After unpack, keep product in the appropriate condition, otherwise bubble seal of Protective film may be printed on Polarizer. Maximum piling up 7 cartons \*Conditions to storage after unpacking (Storage environment) Temperature 0 to 40°C Humidity 60%RH or less No-condensing occurs under low temperature with high humidity condition. Atmosphere No poisonous gas that can erode electronic components and/or wiring materials should be detected. Time period 1 year (Shelf life) Others Keep/ store away from direct sunlight Storage goods on original tray made by TOPPAN. #### SPECIFICATIONS № 21TLM081 #### 16.5 Precautions for Peeling off the Protective film The followings work environment and work method are recommended to prevent the TFT monitors from static damage or adhesion of dust when peeling off the protective films. #### A) Work Environment - a) Humidity: 50 to 70 %RH, Temperature15 to 27°C - b) Operators should wear conductive shoes, conductive clothes, conductive finger tips and grounded wrist-straps. Use an electrostatic neutralization blower. - Anti-static treatment should be implemented to work area's floor. Use a room shielded against outside dust with sticky floor mat laid at the entrance to eliminate dirt. #### B) Work Method The following procedures should taken to prevent the driver ICs from charging and discharging. - a) Use an electrostatic neutralization blower to blow air on the TFT monitors to its lower right when LSI is placed at the bottom. Optimize direction of the blowing air and the distance between the TFT monitors and the electrostatic neutralization blower. - b) Put an adhesive tape (Scotch tape, etc) at the lower right corner area of the protective film to prevent scratch on surface of TFT monitors. - c) Peel off the adhesive tape slowly (spending more than 2 secs to complete) by pulling it to opposite direction. Direction of blowing air (Optimize air direction and the distance) #### 16.6 Warranty TOPPAN is only liable to defective goods which is stored and used under the condition complying with this specifications and returned within 1 (one) year. Warranty caused by manufacturing defect shall be conducted by replacement of goods or refundment at unit price. #### SPECIFICATIONS № 21TLM081 #### **APPENDIX** Reference Method for Measuring Optical Characteristics and Performance 1. Measurement Condition (Backlight ON) Measuring instruments: CS2000(KONICA MINOLTA), LCD7200(OTSUKA ELECTRONICS), EZcontrastXL88(ELDIM) Driving condition: Refer to the section "Optical Characteristics" Measured temperature: 25°C unless specified Measurement system: See the chart below. The luminance meter is placed on the normal line of measurement system. Measurement point: At the center of the screen unless otherwise specified Dark box at constant temperature <sup>\*</sup>Measurement is made after 30 minutes of lighting of the backlight. Measurement point: At the center point of the screen Brightness distribution: 9 points shown in the following drawing. <Portrait model> Dimensional ratio of active area Backlight IL=5.0mA (30/37) SPECIFICATIONS № 21TLM081 Issue:Feb.14,2022 Measurement Condition (Contrast ratio Backlight OFF only) Measuring instruments: LCD7200(OTSUKA ELECTRONICS), Ring Light (40,000 lx, φ58) Driving condition: Refer to the section "Optical Characteristics" Measured temperature: 25°C unless specified Measurement system: See the chart below. Measurement point: At the center of the screen unless otherwise specified | | | SPECIFICATIONS № 21TLM081 | | Issue:Feb.14,202 | |---------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------| | 2. Test | Method | | | | | Notice | Item | Test method | Measuring instrument | Remark | | 1 | Response | Measure output signal waveform by the luminance meter when raster of window pattern is changed from white to black and from black to white. Black White Black 100% 90% TOFF | LCD7200 | Black display [Data]=00h White display [Data]=3Fh TON Rise time TOFF Fall time | | 2 | Contrast ratio | Measure maximum luminance Y1([Data]=3Fh) and minimum luminance Y2([Data]=00h) at the center of the screen by displaying raster or window pattern. Then calculate the ratio between these two values. Contrast ratio = Y1/Y2 Diameter of measuring point: 7.8mmφ(CS2000) Diameter of measuring point: 3mmφ(LCD7200) | CS2000<br>LCD7200 | Backlight ON<br>Backlight OFF | | 3 | Viewing angle<br>Horizontalθ<br>Verticalφ | Move the luminance meter from right to left and up and down and determine the angles where contrast ratio is (10). | EZcontrastXL88 | | | 4 | White chromaticity | Measure chromaticity coordinates x and y of CIE1931 colorimetric system at [Data] = 3Fh Color matching function: 2°view measurement angle: 1° | CS2000 | | | 5 | Center<br>brightness | Measure the brightness at the center of the screen. | CS2000 | | | 6 | Brightness<br>distribution | (Brightness distribution) = 100 x B/A % A: max. brightness of the 9 points B: min. brightness of the 9 points | CS2000 | | | 7 | Burn-in | Visually check burn-in image on the screen after 2 hours of "window display" ([Data]=00h/3Fh). | | At optimized<br>VCOMDC | Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact: Headquarters #### FORTEC Elektronik AG Augsburger Str. 2b 82110 Germering Phone: +49 89 894450-0 E-Mail: <u>info@fortecag.de</u> Internet: <u>www.fortecag.de</u> Fortec Group Members Austria Distec GmbH Office Vienna Nuschinggasse 12 1230 Wien Phone: +43 1 8673492-0 E-Mail: info@distec.de Internet: www.distec.de Germany Distec GmbH Augsburger Str. 2b 82110 Germering Phone: +49 89 894363-0 E-Mail: <u>info@distec.de</u> Internet: <u>www.distec.de</u> Switzerland ALTRAC AG Bahnhofstraße 3 5436 Würenlos Phone: +41 44 7446111 E-Mail: <u>info@altrac.ch</u> Internet: <u>www.altrac.ch</u> United Kingdom Display Technology Ltd. Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN Phone: +44 1480 411600 E-Mail: <u>info@displaytechnology.co.uk</u> Internet: <u>www. displaytechnology.co.uk</u> USA APOLLO DISPLAY TECHNOLOGIES A FORTEC GROUP MEMBER Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779 Phone: +1 631 5804360 E-Mail: info@apollodisplays.com Internet: www.apollodisplays.com