(1/40)

SDEC	IEIC A	TIONS	NIO	22TI	MACO
SPEU	ILICA	HUNS	1/1≃	z_{OIL}	IVIUU

Issue:Oct.27,2023

Customer's Approval

Specifications for

Blanview TFT-LCD Monitor

(4.0" WVGA 480 x RGB x 800 Portrait)

Version 1.0

(Please be sure to check the specifications latest version.)

MODEL COM40H4P25ULC

Signature :	
Name :	
Section:	
Title :	
Date :	
ORTUSTECI	
	TOPPAN INC. Electronics Division Technological Development Department III
	Approved by Epuchi
	Checked by J. Matsumak V
	Prepared by M. Joyo

TOPPAN INC.

(2/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

Version History

Ver.	Date	Page		Description
0.0	Jul.24,2023	-	-	Tentative issue
1.0	Oct.27,2023	-	-	First issue
		All		All
			Change	Company name logo font
\wedge		P.21		9.1 Power-ON Sequence
×7			Correct	Error correct
		P.27		11.1 Optical Characteristics
			Add	BL current / Rating/White Chromaticity Range
		P.28		11.2 Temperature Characteristics
			Add	BL current / Specification
		P.29		12. Defective Display and Screen Quality
			Add	Signal condition/BL current
			Correct	Error correct
		P.31	0011001	13. Reliability Test
		.5	Add	number of failures /number of examinations
			Add	
		1	I ^{Add}	Applied voltage (Surface discharge test)
		P.32	ا ما ما	Table2. Reliability Criteria
			Add	Standard
			\circ \vee	
	\ '	(-2)		
		1 \ \frac{1}{2} \ \frac{1}	I	
		7 /		

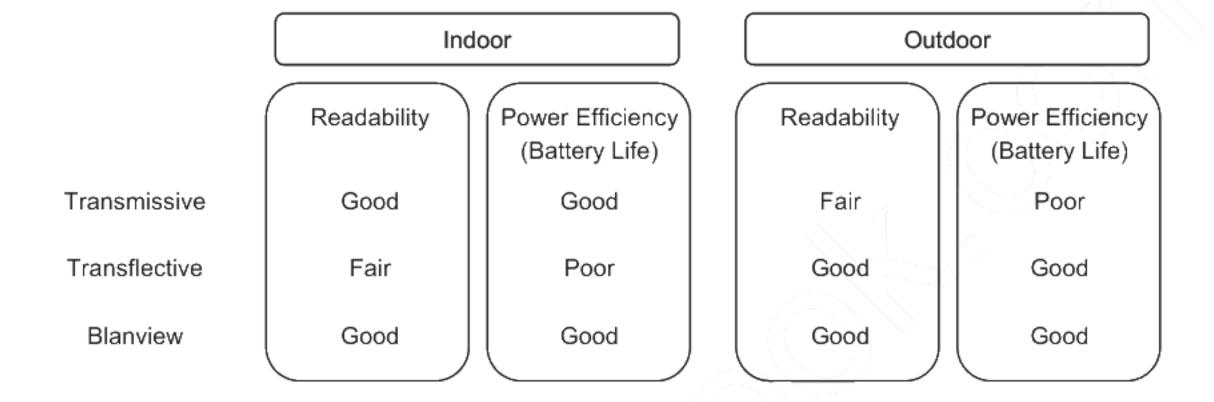
Contents

4	امما	action		1
		cation		4
۷.	2.1	ne Specifications Features of the Product		5
				5
2	2.2	Display Method		5
٥.		nsions and Shape		7
	3.1	Dimensions		7
		Outward Form		8
4		Serial № print (S-print)		9
		Assignment	• • • • • • • • • • • • • • • • • • • •	10
		olute Maximum Rating		11
		ommended Operating Conditions		11
۲.		trical Characteristics		1/2
	7.1	DC Characteristics		12
		AC Characteristics	••••••	14
	7.3	Input Timing Characteristics	• • • • • • • • • • • • • • • • • • • •	्17
	7.4	Input Signal Timing Chart		18
8.	Abou	ut MIPI Interface		
	8.1	Version		19
	8.2	DSI protocol	(, , , , , , , , , , , , , , , , , , ,	19
	8.3	Packet data types	, , , , , , , , , , ,	20
	8.4	Packet Footer on the long packet		20
9.	Sequ	uence		
	9.1	Power-ON Sequence		21
	9.2	Power-OFF Sequence		24
	9.3	Sleep Sequence		24
	9.4	Sleep Release Sequence		24
	9.5	Power ON/OFF timing		25
n		Circuit		26
		acteristics		
		Optical Characteristics		27
		• (3 //) >		28
2		Temperature Characteristics		20
۷.		ria of Judgment		20
		Defective Display and Screen Quality	• • • • • • • • •	29
		Screen and Other Appearance		30
		ability Test		31
		king Specifications	• • • • • • • • • • • • • • • • • • • •	33
5.		dling Instruction		
	15.1	Cautions for Handling LCD panels		34
	15.2	Precautions for Handling	• • • • • • • • • • • • • • • • • • • •	35
	15.3	Precautions for Operation	• • • • • • • • •	35
	15.4	Storage Condition for Shipping Cartons	• • • • • • • • • •	36
	15.5	Precautions for Peeling off		
		the Protective film	• • • • • • • • • •	37
	15.6	Warranty	• • • • • • • • •	37
ДГ	PPFNI	NIX		38

1. Application

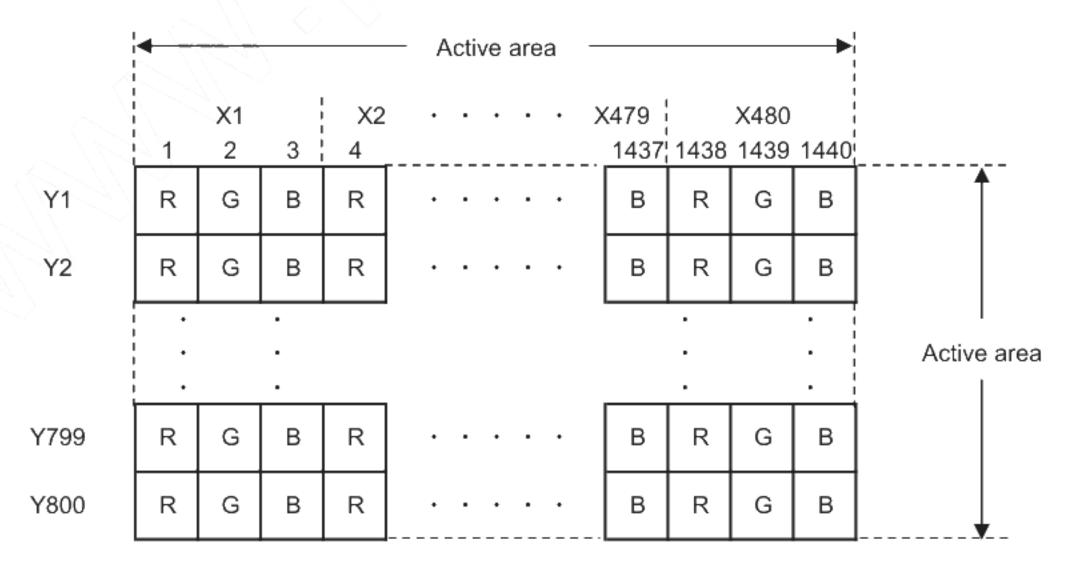
This Specification is applicable to 100.76 mm (4.0 inch) Blanview TFT-LCD monitor for non-military use.

- O TOPPAN makes no warranty or assume no liability that use of this Product and/or any information including drawings in this Specification by Purchaser is not infringing any patent or other intellectual property rights owned by third parties, and TOPPAN shall not grant to Purchaser any right to use any patent or other intellectual property rights owned by third parties. Since this Specification contains TOPPAN's confidential information and copy right, Purchaser shall use them with high degree of care to prevent any unauthorized use, disclosure, duplication, publication or dissemination of TOPPAN's confidential information and copy right.
- O If Purchaser intends to use this Products for an application which requires higher level of reliability and/or safety in functionality and/or accuracy such as transport equipment (aircraft, train, automobile, etc.), disaster-prevention/security equipment or various safety equipment, Purchaser shall consult TOPPAN on such use in advance.
- This Product shall not be used for application which requires extremely higher level of reliability and/or safety such as aerospace equipment, telecommunication equipment for trunk lines, control equipment for nuclear facilities or life-support medical equipment.
- It must be noted as an mechanical design manner, especial attention in housing design to prevent
 arcuation/flexure caused by stress to the LCD module shall be considered.
- TOPPAN assumes no liability for any damage resulting from misuse, abuse, and/or miss-operation of the Product deviating from the operating conditions and precautions described in the Specification.
- It shall be mutually conferred if nonconforming defect
 which result from unspecified cause in this specification arises.
- If any issue arises as to information provided in this Specification or any other information, TOPPAN and Purchaser shall discuss them in good faith and seek solution.
- TOPPAN assumes no liability for defects such as electrostatic discharge failure occurred during peeling off the protective film or Purchaser's assembly process.


This Product is compatible for RoHS(2.0) directive.

Object substance	Maximum content [ppm]
Cadmium and its compound	100
Hexavalent Chromium Compound	1000
Lead & Lead compound	1000
Mercury & Mercury compound	1000
Polybrominated biphenyl series (PBB series)	1000
Polybrominated biphenyl ether series (PBDE series)	1000
Bis(2-ethylhexyl)phthalate series(DEHP series)	1000
Butyl benzyl phthalate series(BBP series)	1000
Dibutyl phthalate series(DBP series)	1000
Diisobutyl phthalate series(DIBP series)	1000

2. Outline Specifications


2.1 Features of the Product

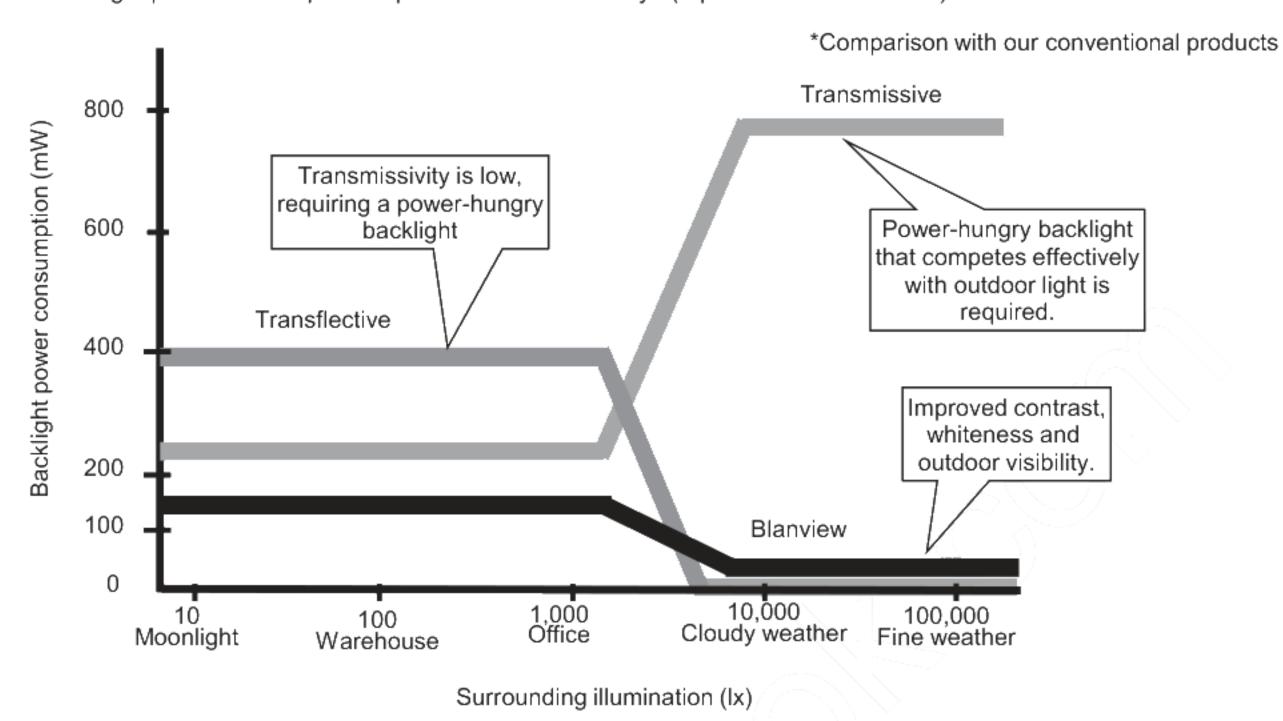
- 4.0 inch diagonal display, 480 x RGB [H] x 800 [V] dots.
- 24bitRGB (8-8-8 Format) / 16.7 Million colors.
- MIPI DSI as high-speed interface. Video mode only.
- Timing generator [TG], Counter-electrode driving circuitry, Built-in power supply circuit.
- Various display controls and functional selection.
- Long life & High bright white LED back-light.
- Blanview TFT-LCD, improved outdoor readability.
 - * MIPI: Mobile Industrial Processor Interface, DSI: Display Serial Interface

2.2 Display Method

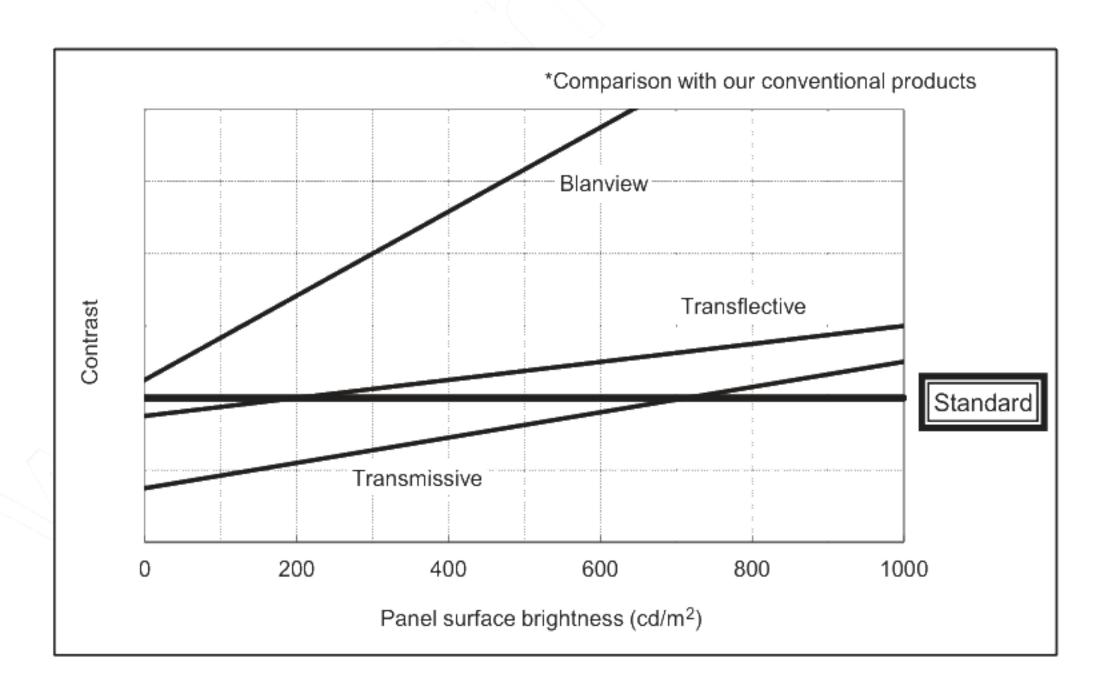
Items	Specifications	Remarks
Display type	VA 16.7 Million colors.	
	Blanview, Normally black.	
Driving method	a-Si TFT Active matrix.	
	Line-scanning, Non-interlace.	
Dot arrangement	RGB stripe arrangement.	Refer to "Dot arrangement"
Signal input method	MIPI DSI 2-lanes : 2 data lanes and 1 clock lane	
Backlight type	Long life & High bright white LED.	
NTSC Ratio	50%	

Dot arrangement

TOPPAN INC.


(6/40)

SPECIFICATIONS № 23TLM003

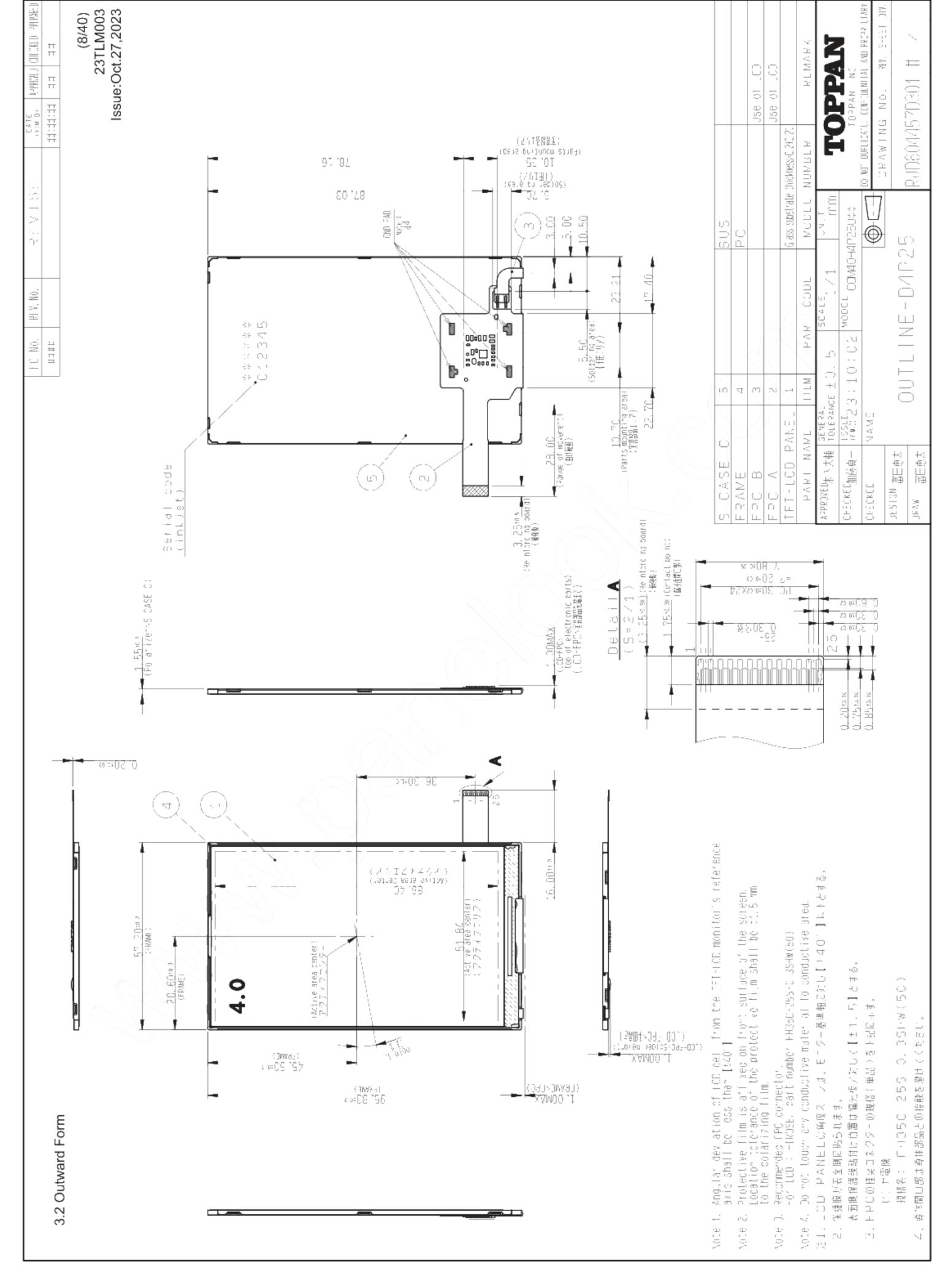

Issue:Oct.27,2023

<Features of Blanview>

- Backlight power consumption required to assure visibility. (equivalent to 3.5"QVGA)

Contrast characteristics under 100,000lx. (same condition as direct sunlight.)
 With better contrast (higher contrast ratio), Blanview TFT-LCD has the best outdoor readability in three different types of TFT-LCD.
 Below chart shows contrast value against panel surface brightness. (Horizontal: Panel surface brightness/ Vertical: Contrast value) LCD panel has enough outdoor readability above our Standard line. (TOPPAN criteria)

(7740)


SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

3. Dimensions and Shape

3.1 Dimensions

Items	Specifications	Unit	Remarks
Outline dimensions	57.20[H] × 95.83 [V] × 1.55 [D]	mm	Exclude FPC cable
Active area	51.84[H] × 86.40[V]	mm	100.76 mm diagonal
Number of dots	1440[H] × 800[V]	dot	
Dot pitch	36.00[H] × 108.00[V]	um	
Surface hardness of the polarizer	2	Н	Load: 2.94 N
Weight	16.5	g	Include FPC cable

3.3 Serial № print (S-print)

3.3.1 Display Items

S-print indicates the least significant digit of manufacture year (1digit), manufacture month with below alphabet (1letter), model code (5characters), serial number (6digits).

* Contents of Display

*	*	****	*****
_	_		
a	b	С	d

	Contents of display								
а	The least significant digit of manufacture year								
b	Manufacture month	Jan-A	n-A May-E						
		Feb-B	Jun-F	Oct-J					
		Mar-C	Jul-G	Nov-K					
		Apr-D	Aug-H	Dec-L					
С	Model code	40CAC (Made in Ja	apan)	(N					
		40CBC (Made in M	alaysia)						
d	Serial number	rial number							

- * Example of indication of Serial № print (S-print)
- ·Made in Japan

3L40CAC000125

means "manufactured in December 2023, 4.0 inch, CA type, C specifications, serial number 000125"

· Made in Malaysia

3L40CBC000125

means "manufactured in December 2023, 4.0 inch, CB type, C specifications, serial number 000125"

3.3.2 Location of Serial № print (S-print)

Refer to 3.2 "Outward Form".

3.3.3 Others

Please note that it is likely to disappear with an organic solvent about the Serial print.

(10/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

4. Pin Assignment

	ssignment			
No.	Symbol	Details	Remark	10
1	GND	Ground		Р
2	LED-	Backlight LED Cathode		Р
3	LED+	Backlight LED Anode		Р
4	VDD	Analog Power Supply	VDD = 3.3V (TYP)	Р
5	VDD	Analog Power Supply	VDD = 3.3V (TYP)	Р
6	GND	Ground(PVSS)		Р
7	VCCIO	DSI and I/O Power Supply	VCCIO = 1.8V (TYP)	Р
8	TEST 4	TEST pin	Please connect this pin to GND.	I
9	TEST 3	TEST pin	Please connect this pin to GND.	I
10	ID1	ID check	Output level is GND.	0
11	ID2	ID check	Output level is GND.	0
12	TEST 1	TEST pin	Please connect this pin to VCCIO(1.8V)	1
13	TEST 2	TEST pin	Please connect this pin to VCCIO(1.8V)	1
14	GND	Ground		Р
15	RESETB	LCD Reset	L:Initialize Power_ON Reset is Required when Turning on the Power	ı
16	GND	Ground	Wilder Farming on the Forest	Р
17	DSI_D0P	MIPI-DSI Data differential signal input pin (Data lane 0)		10
18	DSI_D0N	MIPI-DSI Data differential signal input pin (Data lane 0)		10
19	GND	Ground		Р
20	DSI_CLKN	MIPI-DSI Clock differential signal input pin		I
21	DSI_CLKP	MIPI-DSI Clock differential signal input pin		I
22	GND	Ground		Р
23	DSI_D1P	MIPI-DSI Data differential signal input pin (Data lane 1)		ı
24	DSI_D1N	MIPI-DSI Data differential signal input pin (Data lane 1)		ı
25	GND	Ground		Р

- Recommended connector : (FH35C-25S-0.3SHW(50) /HIROSE ELECTRIC)
- Please make sure to check a consistency between pin assignment in "3.2 Outward Form" and your connector pin assignment when designing your circuit. Inconsistency in input signal assignment may cause a malfunction.
- Since FPC cable has gold plated terminals, gilt finish contact shoe connector is recommended.

(11/40)

Issue:Oct.27,2023

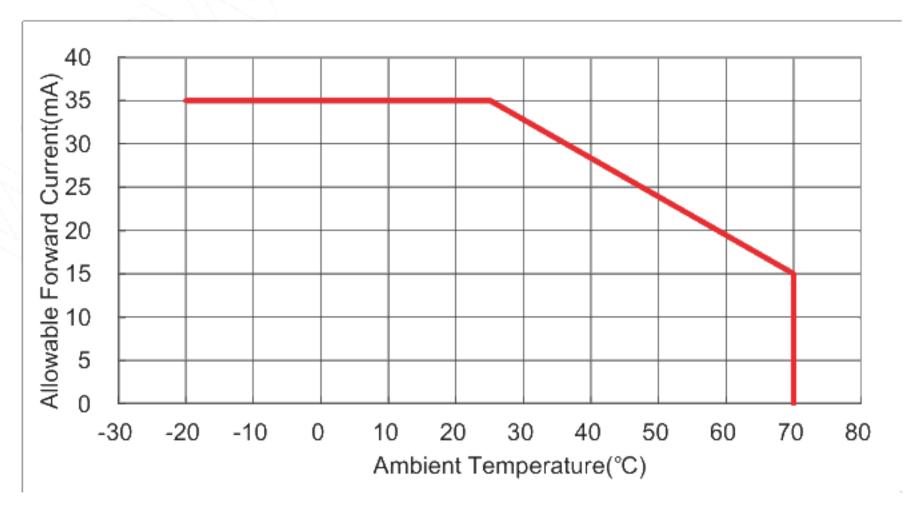
SPECIFICATIONS № 23TLM003

5. Absolute Maximum Rating

GND=0V

Item	Symbol	Condition	Pa	tina	Unit	Applicable terminal
iteiii	Syllibol	Condition	Rating		Ollit	Applicable terrilinal
			MIN	MAX		
Supply voltage	VDD	Ta=25 °C	-0.3	4.6	V	VDD
DSI and I/O Power Supply	VCCIO]	-0.3	4.6	V	VCCIO
voltage						
Input voltage for logic	VI	1	-0.3	VCCIO+0.3	V	RESETB
						TEST1-4
DSI Input voltage	VDSIIN	1	-0.15	1.45	V	DSI_D0P/N,DSI_D1P/N
						DSI_CLKP/N
LED forward current	IL	Ta = 25 °C	-	35	mΑ	LED+ - LED-
		Ta = 70 °C	-	15		
Storage temperature range	Tstg		-30	80	°C	
Storage humidity range	Hstg	Non condensing in an environmental		ental		
		moisture at or less than 40 °C 90%RH.				

6. Recommended Operating Conditions


GND=0V

Item	Symbol	Condition		Rating			Applicable terminal
			MIN	TYP	MAX		
Supply voltage	VDD		2.7	3.3	3.6	V	VDD
DSI and I/O Power Supply voltage	VCCIO		1.7	1.8	1.9	٧	VCCIO
Input voltage for logic	VI		0	\\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	VCCIO	V	RESETB TEST1-4
DSI Input voltage	VDSIIN		-0.05	-	1.35	V	DSI_D0P/N DSI_D1P/N DSI_CLKP/N
Operational temperature range	Тор	Note1,2	-20	25	70	°C	Panel surface temperature
Operating humidity range		Ta<=40 °C	20	-	85	%	
	Нор	Ta>40 °C	Non condensing in an environmental moisture at or less than 40 °C 85%RH.				

Note1: This monitor is operatable in this temperature range. With regard to optical characteristics, refer to Item 11."Characteristics".

Note2: Acceptable Forward Current to LED is up to 15 mA, when Ta=+70 °C.

Do not exceed Allowable Forward Current shown on the chart below.

TOPPAN INC.

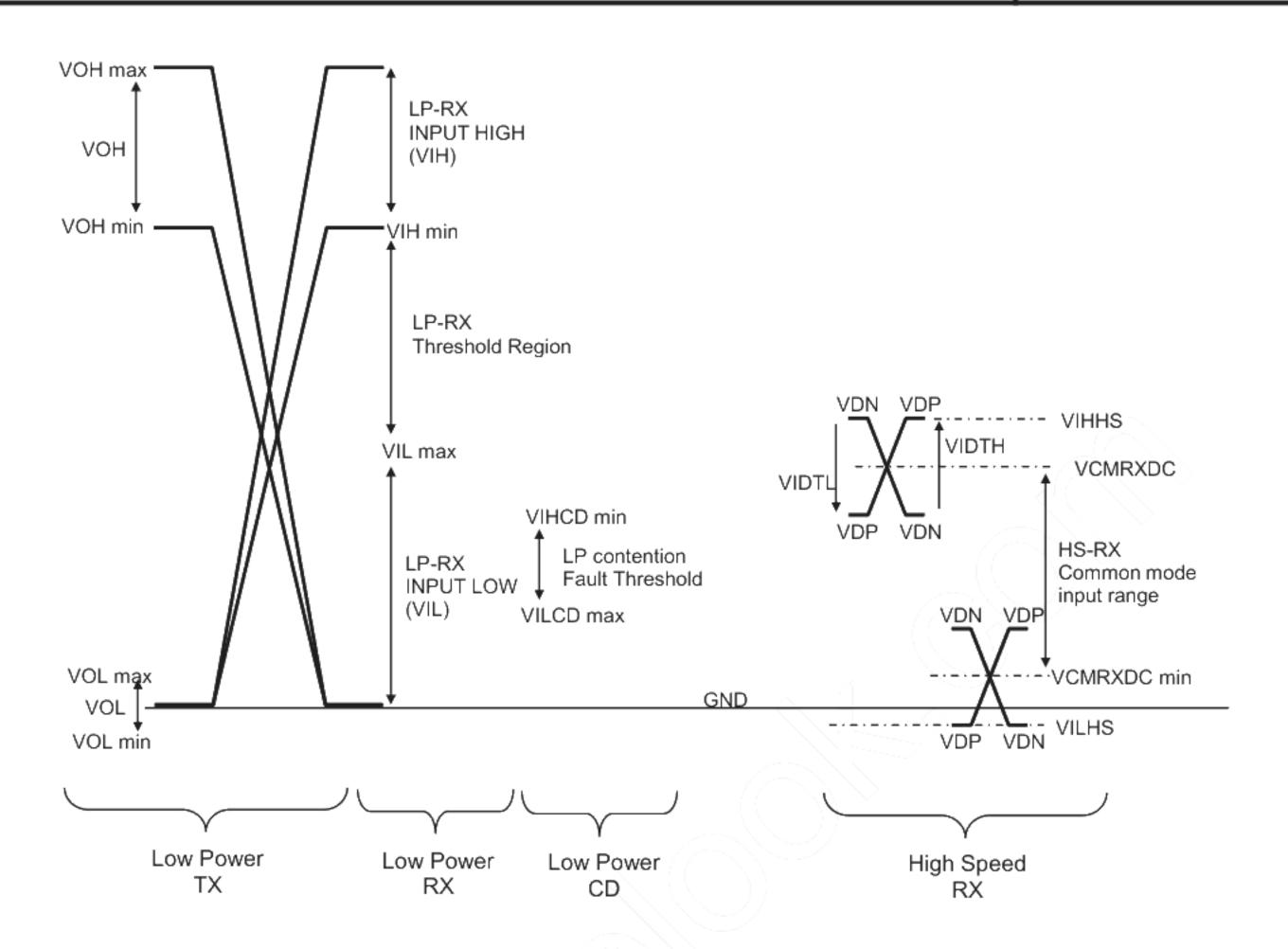
(12/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

7. Electrical Characteristics

7.1 DC Characteristics


7.1.1 Display Module

(Unless otherwise noted, Ta=25 °C,VDD=3.3V,VCCIO=1.8V,GND=0V)

Item	Symbol	Condition		Rating		Unit	Applicable terminal				
			MIN	TYP	MAX						
Input Signal	VIH	VCCIO=1.7-1.9V	0.7×VCCIO	-	VCCIO	V	RESETB				
Voltage	VIL		0	-	0.3×VCCIO	V	TEST1-4				
Operating	IDD	fDSICLK=150 MHz	1	12.5	25.0	mΑ	VDD				
Current	ICCIO	Color bar display	ı	3.3	6.6	mA	VCCIO				
Sleep_mode	IDDS	Clock/Data=LP11	-	43	100	uA	VDD				
Current	ICCIOS	Sleep_mode	-	10	100	uA	VCCIO				

7.1.2 MIPI DSI Interface

	Item	Symbol	Condition		Rating			
				MIN	TYP	MAX	1	
HS-RX	Differential input high threshold	VIDTH			\Diamond	110	mV	
	Differential input low threshold	VIDTL	(/	-110	-/ <u>-</u>	-	mV	
	Single-ended input high voltage	VIHHS		<u></u>	-	460	mV	
	Single-ended input low voltage	VILHS		-40	-	-	mV	
	Common-mode voltage HS receive mode	VCMRXD C		70	-	330	mV	
	Differential input impedance	ZID		80	100	125	Ohm	
LP-RX	Logic 1 input voltage	VIH		880	-	-	mV	
	Logic 0 input voltage	VIL		-	-	550	mV	
LP-TX	Thevenin output low level	VOL		-50	-	50	mV	
	Thevenin output high level	VOH		1.1	1.2	1.3	V	
	Output impedance of LP transmitter	ZOLP		110	-	-	Ohm	
CD-RX	Logic 1 contention threshold	VIHCD		450	-	-	mV	
	Logic 0 contention threshold	VILCD		-	-	220	mV	

The signal levels for the LP and HS.

7.1.3 Backlight

Item	Symbol	Condition	Rating			Unit	Applicable terminal
	\wedge		MIN	TYP	MAX		
Forward current	IL25	Ta=25 °C		10	35	mA	LED+ - LED-
	1L70	Ta=70 °C			15	mA	
Forward voltage	VL	Ta=25 °C		18.84	19.46	V	
\		IL=10.0mA					
Estimated Life	√\ LL	Ta=25 °C		50,000		hrs	
of LED		IL=10.0mA					
		Note					

Note: - The lifetime of the LED is defined as a period till the brightness of the LED decreases to the half of its initial value.

- This figure is given as a reference purpose only, and not as a guarantee.
- This figure is estimated for an LED operating alone.
 As the performance of an LED may differ when assembled as a monitor.
- Estimated lifetime could vary on a different temperature and usually higher temperature could reduce the life significantly.

TOPPAN INC.

(14/40)

SPECIFICATIONS № 23TLM003


Issue:Oct.27,2023

7.2 AC Characteristics

7.2.1 HS-RX Specifications

(Unless otherwise noted, Ta=25 °C,VDD=3.3V,VCCIO=1.8V,GND=0V)

Item	Symbol		Rating		Unit	Applicable terminal					
		MIN	TYP	MAX							
DSICLK Frequency	f DSICLK	40	-	200	MHz	DSI_CLKP/N					
DSICLK Cycle time	TCLKP	5.0	-	25.0	ns						
DSI Data Transfer Rate	UI	2.5	-	12.5	ns	DSI_D0P/N, DSI_D1P/N					
	t DSIR	80	-	400	Mbps						
Data to Clock Setup Time	Tsetup	0.35	-	-	UI	DSI_D0P/N, DSI_D1P/N					
Clock to Data Hold Time	Thold	0.25	-	-	UI	DSI_CLKP/N					

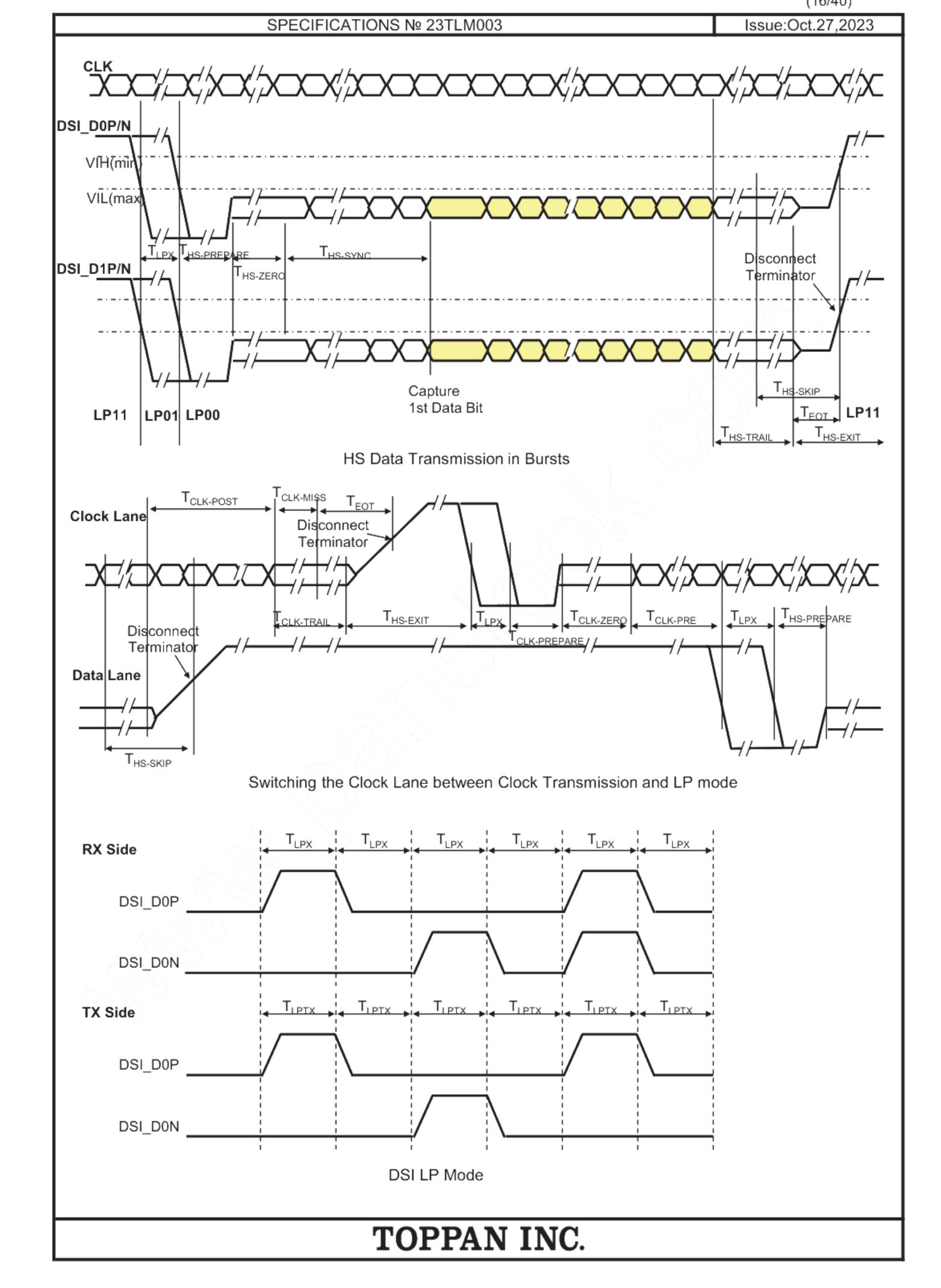
Data to Clock Timing Definitions

7.2.2 LP-TX Specifications

(Unless otherwise noted, Ta=25 °C, VDD=3.3V, VCCIO=1.8V, GND=0V)

		`				,	
Item	Symbol	Condition	Rating			Unit	Applicable terminal
			MIN	TYP	MAX		
15% - 85% rise time	TRLP		-	-	25	ns	DSI_D0P/N
85% - 15% fall time	TFLP		•	•	25	ns	DSI_D0P/N
Slew rate	Δv / ⊿tSR	Cload = 70pF	30	-	500	mV/ns	DSI_D0P/N

(13/40)

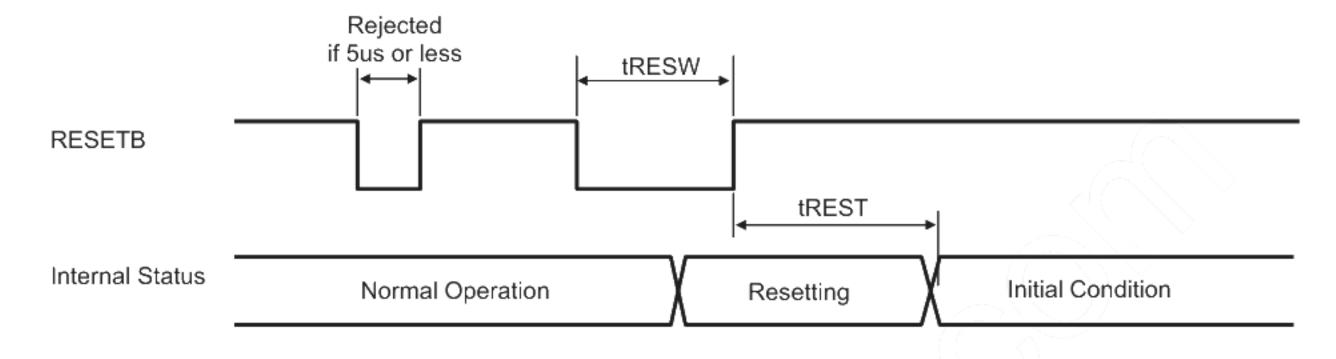

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

7.2.3 RX/TX Specifications

(Unless otherwise noted, Ta=25 °C,VDD=3.3V,VCCIO=1.8V,GND=0V)

Item	Description		Rating		Unit
		MIN	TYP	MAX	
T _{HS-PREPARE}	Time to drive LP00 to prepare for HS transmission	40 ns + 4UI	-	85 ns + 6UI, ≦100 ns	
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + Time to drive HS0 before the SYNC sequence	145 ns +10UI	-	-	
T _{HS-TRAIL}	Time to drive flipped differential state after last payload data bit of a HS transmission burst	max(n*8UI,60 ns+n*4UI)	-	-	
T _{HS-EXIT}	Time to drive LP11 after HS burst	100	-	-	ns
T _{TA-GO}	Time to drive LP00 after Tumaround Request		4*T _{LPTX}		
T _{TA-SURE}	Time out before new TX side starts driving	TLPTX		2*T _{LPTX}	
T _{TA-GET}	Time to drive LP00 by new TX		5*T _{LPTX}		
T _{LPX}	Length of any Low Power state period	50		-	ns
Ratio T _{LPX}	Ratio of T _{LPX} (MASTER)/T _{LPX} (SLAVE) between Master and Slave side	2/3	<u> </u>	3/2	
T _{CLK-POST}	Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode	60 ns + 52UI	-	-	
T _{CLK-PREPARE} + T _{CLK-} ZERO	T _{CLK-PREPARE} +time for lead HS-0 drive period before starting Clock	300	-	-	ns
T _{CLK-PRE}	Time that the HS clock shall be driven prior to any associated Data Lane beginning the transition from LP to HS mode	8	-	-	UI
T _{CLK-PREPARE}	Time to drive LP-00 to prepare for HS clock transmission	38	-	95	ns
T _{CLK-TRAIL}	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	-	-	ns
T _{EOT}	Time from start of THS-TRAIL period to start of LP- 11 state	-	-	105 ns + n*12Ul	
T _{LPTX1}	Length of Low-Power TX state period in case of using DSI clock	-	n*DSITX	-	UI
T _{LPTX2}	Length of Low-Power TX state period in case of using internal OSC clock	-	1/fosc	-	ns



SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

7.2.4 Reset input timing

Item	Symbol	Condition	Rating			Unit	Remark
			MIN	TYP	MAX		
Reset Low Pulse width	tRESW		10	-	-	us	
Reset Complete time	tREST	during Sleep In	-	1	5	ms	
ixeset Complete time	"\L31	during Sleep Out	-	-	120	ms	

RESETB input timing

7.3 Input Timing Characteristics

Item	Symbol		Rating		Unit	Remark
		MIN	TYP	MAX		
CLK Frequency	fPCLK	20.3	25.0	32.2	MHz	PCLK
VSYNC Frequency Note	fVSYNC	54	57.46	66	Hz	VSYNC
VSYNC Cycle	tv	818	824	950	Н	
VSYNC Pulse Width	tw4H	6	8	50	Н	
Vertical Back Porch	tvb	6	8	50	Н	
Vertical Front Porch	tvf	6	8	50	Н	
Vertical Display Period	tvdp	\sqrt{z}	800		Н	
HSYNC frequency	fHSYNC	38.8	48.6	53.4	kHz	HSYNC
HSYNC Cycle	th	506	528	568	CLK	
HSYNC Pulse Width	tw5H	6	16	78	CLK	
Horizontal Back Porch	thb	6	16	78	CLK	
Horizontal Front Porch	thf	6	16	78	CLK	
Horizontal data start Point	tw5H+thb	20		83	CLK	
Horizontal Blanking Period	tw5H+thb+thf	26		88	CLK	
Horizontal Display Period	thdp		480		CLK	

Note: This is recommended spec to get high quality picture on display. It is customer's risk to use out of this frequency.

(10/40) Issue:Oct.27,2023 SPECIFICATIONS № 23TLM003 7.4 Input Signal Timing Chart -Vertical Timing t٧ tw4H **VSYNC** 1H **←**→ **HSYNC** tvdp tvf tvb R[7:0] G[7:0] B[7:0] -Horizontal Timing th tw5H **HSYNC** thdp thf thb R[7:0] G[7:0] B[7:0] Timing Characteristics of input signals TOPPAN INC.

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

8. About MIPI Interface

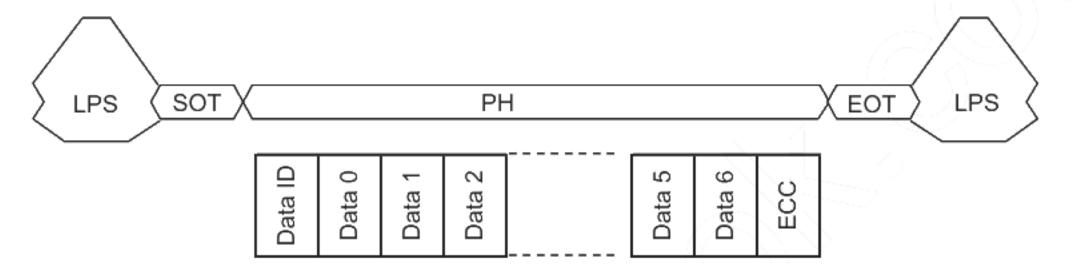
8.1 Version

The DSI incorporated in the LCD-Driver complies with the following standards.

MIPI DSI : Version 1.01 MIPI D-PHY : Version 1.00

Data transfer mode: Video mode only.

If the DSI_CLK lane becomes unintentionally at the LP (Low Power) level

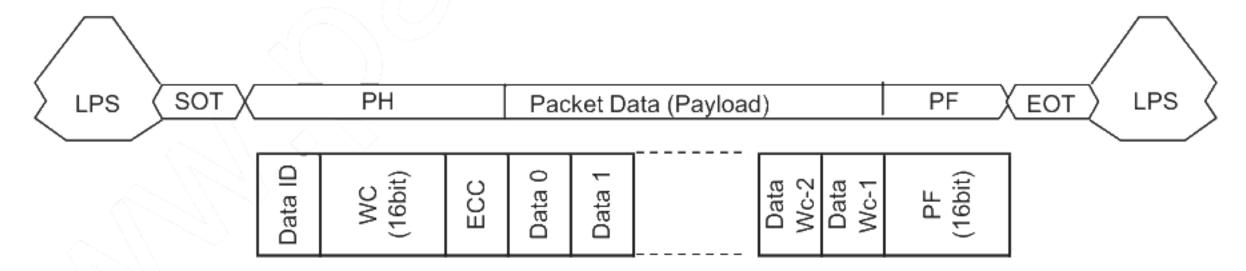

due to the influence of noise such as ESD, it may malfunction.

As a countermeasure for this, we recommend turning DSI_CLK OFF (LP) during the blanking period.

Virtual Channel: Set to VC[1:0]=00.

8.2 DSI protocol

Short packets specify the payload length using the Data Type field and are from 2 to 9 bytes in length.
 Short packets is used for most Command Mode commands and associated parameters.



LPS : Low power state SOT : Start of Transmission PH : Packet Header

DI(Data ID): Contain Virtual Channel Identifier and Data Type

ECC: Error Correction Code

 Long packets specify the payload length using a two-byte Word Count field and then the payload maybe 0 to 65,541 bytes in length. Long packets permit transmission of large blocks of pixel or other data.

LPS: Low power state SOT: Start of Transmission PH: Packet Header

DI(Data ID): Contain Virtual Channel Identifier and Data Type WC(Word Count): The receiver use WC to define packet end.

ECC: Error Correction Code

PF(Packet Footer): Mean 16-bit Checksum.

8.3 Packet data types

LCD-Driver has the following restriction.

Generic short / Long Write Cmd is not supported.

It is only DCS Short / Long Write Cmd.

Processor to peripheral direction

Data Type Hex	Description	Size
01 h	Sync Event , V Sync Start (01,00,00,07)	Short
11 h	Sync Event , V Sync End (11,00,00,14)	Short
21 h	Sync Event, H Sync Start (21,00,00,12)	Short
31 h	Sync Event , H Sync End (31,00,00,01)	Short
22 h	Shut Down Peripheral Command (22,00,00,1E)	Short
32 h	Turn On Peripheral Command (32,00,00,0D)	Short
05 h	DCS WRITE , no parameters	Short
15 h	DCS WRITE , one parameters	Short
06 h	DCS READ , no parameters	Short
37 h	Set Maximum Return Packet Size	Short
08 h	End of Transmission Packet (08,0F,0F,01)	Short
09 h	Null Packet , no data	Long
19 h	Blanking Packet , no data	Long
39 h	DCS Long Write Command Packet	Long
0E h	Packed Pixel Stream, 16-bit RGB, 5-6-5 Format	Long
1E h	Packed Pixel Stream, 18-bit RGB, 6-6-6 Format	Long
2E h	Loosely Packed Pixel Stream , 18-bit RGB ,6-6-6 Format	Long
3E h	Packed Pixel Stream , 24-bit RGB , 8-8-8 Format	Long

Peripheral to processor direction

۳	to process	an editori	
	Data Type	Description	Size
	Hex		
	02 h	Acknowledge with Error Report	Short
	1C h	DCS Long READ Response	Long

8.4 Packet Footer on the long packet

After Packet Data, Packet Footer is added in Long packet. Packet Footer adds CRC calculated from Packet Data as Checksum.

Checksum(2byte) = CRC(Packet Data)

 $CRC = X^16 + X^12 + X^5 + X^0$

(21/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

9. Sequence

9.1 Power-ON Sequence

PH:Packet Header PD :Packet Data

PF:Packet Footer (=Checksum)

						acket Footer (=Checksum)
No.		Function	DNC	Command /Parameter	Туре	Command/Parameter
		RESETB=0				
	Power on	VDD, VCCIO on				
	Wait	wait 10 msec or more				
		RESETB=1				
	MIPI signal state	keep DSI_CLKN, DSI_CLKP, DSI_D0N , DSI_D0P, DSI_D1N, DSI_D1P in STOP state (LP-11)				
	Wait	wait 10 msec or more				
1	Sleep out	Sleep out	0	11h	PH	[05 11 00 36]
	Wait	wait 200 msec or more				
2	Facilia	Enable extended commands	0	B9h	PH	[39 04 00 2C]
	Enable	Parameter 1	1	FFh	PD	[B9 FF 83 63]
	extended commands	Parameter 2	1	83h	PF	[XX XX]
	Commands	Parameter 3	1	63h		
3	Set lane	Two data lane, Sync Pulses mode *1	0	BAh	PH	[39, 0E, 00, 15] [BA 80 00 10 08 08 10 7E 6E 6D 0A
	number/	Parameter 1	1 1	80h	PD	01 80 43]
	operation mode	Parameter 2	 	00h	PF	[XX XX]
		Parameter 3	1 1	10h	7	
		Parameter 4	1 1	08h	//	
		Parameter 5		08h	-	
		Parameter 6	1	10h	-	
		Parameter 7	1	7Eh	-	
		Parameter 8	1	6Eh	-	
		Parameter 9	1	6Dh	1	
		Parameter 10	1	0Ah	-	
		Parameter 11	1 1	01h	-	
		Parameter 12	1 1	80h	1	
		Parameter 13	 	43h	-	
4	Memory access	Memory access control	0	36h	PH	[15 36 00 29]
4	control	Parameter 1	1	00h		[13 30 00 29]
	00111101	T didiffeter i	 	0011	•	
	Wait	wait 5 msec or more			\vdash	
5	Set panel	Set panel	0	CCh	PH	[15 CC 0B 22]
J	Oet parier	Parameter 1	1	0Bh		[10 00 00 22]
		i didilietei i	 	UDII	1	
	Wait	wait 5 msec or more				
6	Display on	Display on	1	29h	PH	[05 29 00 1C]
7	Video stream	Video signals input				
	Α,					

(22/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

*1 The described value is Sync Pulses mode in DSI interface.

If you want to changes the lane number/ operation mode. Please follow the under packet to change it.

Two data lane, Sync Pulses mode:

Packet header [39, 0E, 00, 15],

Packet data [BA 80 00 10 08 08 10 7E 6E 6D 0A 01 80 43],

Packet footer[XX XX]

Two data lane, Sync Events mode/Burst mode:

Packet header [39, 0E, 00, 15],

Packet data [BA 80 00 10 08 08 10 7E 6E 6D 0A 01 84 43],

Packet footer[XX XX]

One data lane, Sync Pulses mode:

Packet header [39, 0E, 00, 15],

Packet data [BA 80 00 10 08 08 10 7E 6E 6D 0A 00 80 43],

Packet footer[XX XX]

One data lane, Sync Events mode/Burst mode:

Packet header [39, 0E, 00, 15],

Packet data [BA 80 00 10 08 08 10 7E 6E 6D 0A 00 84 43],

Packet footer[XX XX]

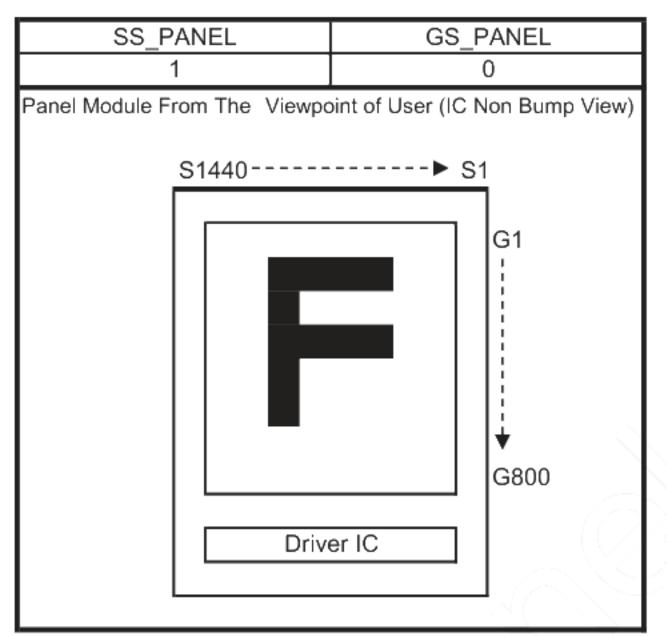
(23/40)

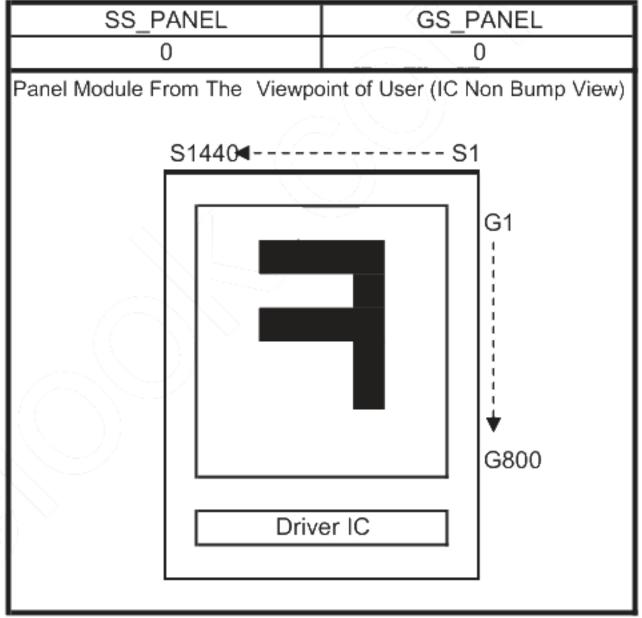
SPECIFICATIONS № 23TLM003

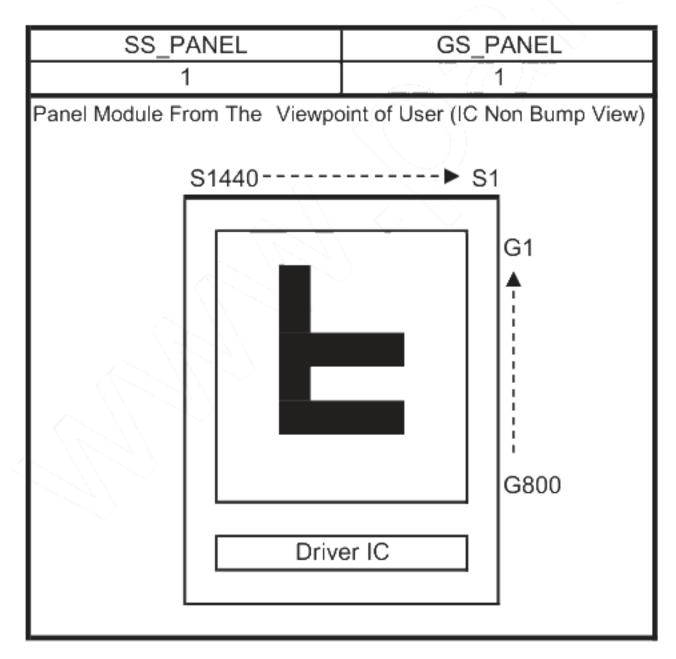
Issue:Oct.27,2023

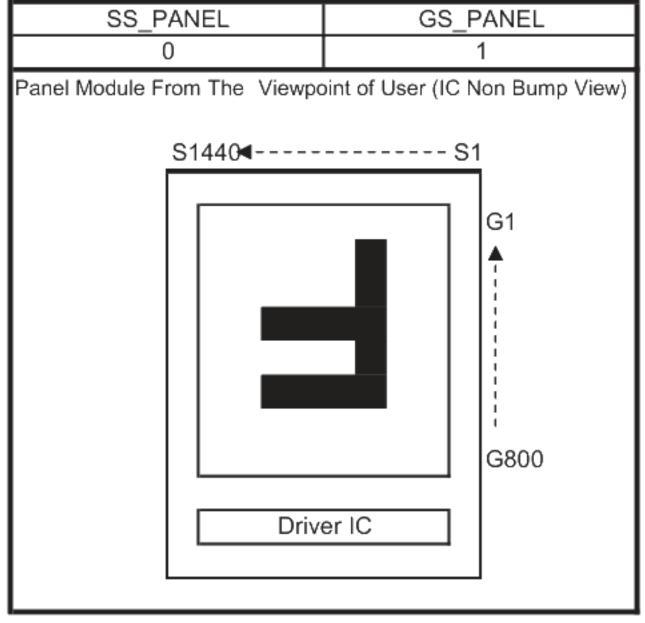
Set panel (CCh)

This command is to decide the display direction (flip vertical and flip horizontal).


The setting parameter as below.


CCh	DNC	D7	D6	D5	D4	D3	D2	D1	D0	Hex
Command	0	1	1	0	0	1	1	0	0	CC
parameter1	1			•	SM_PANEL	SS_PANEL	GS_PANEL	REV_ PANEL	BGR_ PANEL	•


BGR_PANEL:Has to be fixed to BGR_PANEL = 1. **REV_PANEL**:Has to be fixed to REV_PANEL = 1.


GS_PANEL: Specify the shift direction of gate driver output. **SS_PANEL**: Specify the shift direction of source driver output.

SM_PANEL: Has to be fixed to SM_PANEL = 0.

Note: Following commands required to be set to activate set panel (CCh).

Function	Command/Parameter
Memory access control	36h
Parameter 1	00h

TOPPAN INC.

(24/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

9.2 Power-OFF Sequence

PH :Packet Header PD :Packet Data

PF:Packet Footer (=Checksum)

						adriati dotal (diladradili)
No.		Function	DNC	Command /Parameter	Туре	Command/Parameter
1	Display off	Display off	0	28h	PH	[05 28 00 06]
	Wait	wait 5 msec or more				
2	Sleep in	Sleep in	0	10h	PH	[05 10 00 2C]
	Wait	wait 2 frames or more				
3	Video signals	Video signals stop				
4	RESETB	RESETB off				

Power off

9.3 Sleep Sequence

No.		Function	DNC	Command /Parameter	Туре	Command/Parameter
1	Sleep in	Sleep in	0	10h	PH	[05 10 00 2C]
	Wait	wait 2 frames or more				
2	Video signals	Video signals stop			٠. L	

9.4 Sleep Release Sequence

No		Function	DNC	Command /Parameter	Туре	Command/Parameter
1	Video signals	Video signals start				
	Wait	wait 2 frames or more				
2	Sleep out	Sleep out	0	11h	PH	[05 11 00 36]

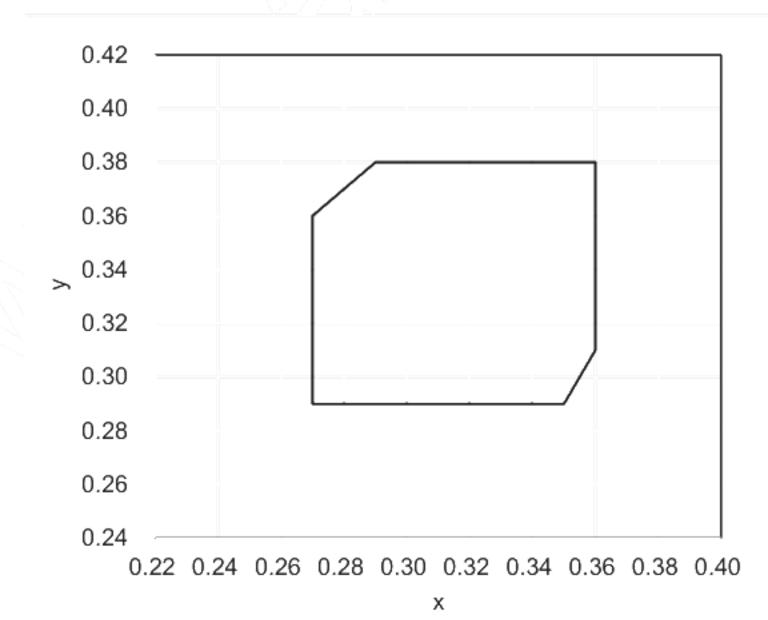
(23/40) SPECIFICATIONS № 23TLM003 Issue:Oct.27,2023 9.5 Power ON/OFF timing VDD 0 msec or more 0 msec or more VCCIO 0 msec or more 10 msec or more **RESETB** 120 msec or more 10 msec or more Sleep 200 msec or more Sleep but Sleep in Standard command 120 msec or more Display on 0 msec or more Display on Display off 10 msec or more 2 frames or more DSI_CLKP/N DSI_D0P/N DSI_D1P/N TOPPAN INC.

(20/40) SPECIFICATIONS № 23TLM003 Issue:Oct.27,2023 10. LED Circuit LED+ O-LED- O-TOPPAN INC.

11. Characteristics

11.1 Optical Characteristics

(Measurement Condition)


Measuring instruments: CS2000 (KONICA MINOLTA), LCD7200 (OTSUKA ELECTRONICS), EZcontrastXL88 (ELDIM)

Driving condition: VDD=3.3V, VCCIO=1.8V, GND=0V, Optimized VCOMDC

Backlight: IL= 10.0 mA
Measured temperature: Ta = 25°C

	Item	Symbol	Condition	MIN	TYP	MAX	Unit	Note №	Remark
Response time	Rise time + Fall time	TON + TOFF	[Data]= 00h← → FFh	-	-	100	ms	1	
Contrast ratio	Backlight ON	CR	[Data]= FFh / 00h	300	600	1		2	
Con	Backlight OFF			•	3	1			
	Left	θL	[Data]=	-	80	-	deg	3	
Viewing angle	Right Up	θR	FFh / 00h	-	80	4	deg]	
/je/	Up	φU	CR ≧ 10	-	80	\ , \	deg]	
	Down	φD		-	80	1	deg		
White	e Chromaticity	Х	[Data]= FFh	White ch	hite chromaticity range			4	
		у) /			
Cente	er Brightness		[Data]= FFh	420	600	-	cd/m³	5	
Brightness distribution			[Data]= FFh	70		-	%	6	
Burn-in				No noticeable burn-in image shall be observed after 2 hours of window pattern display.			7		

^{*} Note number 1 to 7: Refer to the APPENDIX of "Reference Method for Measuring Optical Characteristics and Performance".

White Chromaticity Range

(White Chromaticity Range)

х	у	
0.27	0.29	
0.35	0.29	
0.36	0.31	
0.36	0.38	
0.29	0.38	
0.27	0.36	
0.27	0.29	

(20/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

11.2 Temperature Characteristics

(Measurement Condition)

 \triangle

Measuring instruments: CS2000 (KONICA MINOLTA), LCD7200 (OTSUKA ELECTRONICS)

Driving condition: VDD=3.3V, VCCIO=1.8V, GND=0V, Optimized VCOMDC

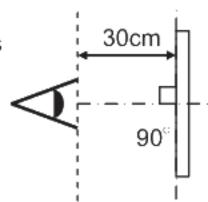
Backlight: IL= 10.0 mA

Item	1	Symbol	Specif	Remark	
			Ta = -20 °C	Ta = 70 °C	
Response time	Rise time	TON	600 msec or less	80 msec or less	
	+	+			
	Fall time	TOFF			
Contrast ratio		CR	200 or more	200 or more	Backlight ON
Display Quality			No noticeable display defect or ununiformity		
			should be observed.		

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

12. Criteria of Judgment

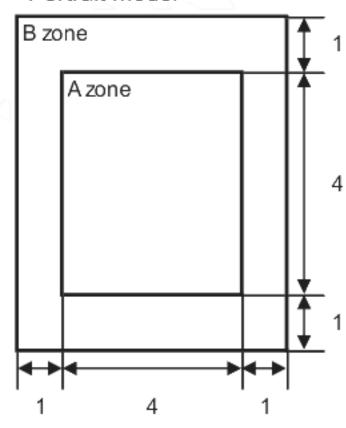

12.1 Defective Display and Screen Quality

Test Condition: Observed TFT-LCD monitor from front during operation with the following conditions

Driving Signal: Raster Patter (RGB, white, black) Signal condition: [Data]:00h, 90h, FFh (3steps)

Observation distance: 30 cm

Illuminance: 200 to 350 lx Backlight: IL=10.0mA


D	Defect item Defect content		Criteria	
	Line	Black, white or color	Not exists	
	defect			
<u>≟</u>	Dot	Uneven brightness	on dot-by-dot base due to defective	Refer to table 1
Quality	defect	TFT or CF, or dust i	s counted as dot defect	
		(brighter dot, darker	dot)	
Display		High bright dot: Visi	ble through 2% ND filter at [Data]=00h	
l:s		Low bright dot: Visi	ble through 5% ND filter at [Data]=00h	
		Dark dot: Appear da	ark through white display at [Data]=90h	
		Invisible through 5%	ND filter at [Data]=00h	Acceptable
	Stain	Uneven brightness	(white stain, black stain etc)	Invisible through 5% ND filter at Black screen.
				Invisible through 1% ND filter at other screen.
<u>≟</u>	Foreign	Point-like	0.25mm< φ	N=0
lal	Foreign particle		0.20mm< φ ≦0.25mm	N≦2
			φ ≦0.20mm	Acceptable
Screen		Liner	3.0mm < L and 0.08mm < W	N=0
S			L ≦ 3.0mm or W ≦ 0.08mm	Acceptable
	Others			Use boundary sample
				for judgment when necessary

^{*} φ (mm): Average diameter = (major axis + minor axis) / 2, W (mm): Width, L (mm): Length, N: Permissible number

Table1

Table						
	High	Low	Dark			
Area	bright	bright	dot	Total	Criteria	
	dot	dot		LV	(7) ₁ ~	
А	0	2	2	3	Permissible distance between same color bright dots	
					(includes neighboring dots): 3 mm or more	
В	2	4	, · . 4	6	Permissible distance between same color high bright dots	
					(includes neighboring dots): 5 mm or more	
Total	2	4	4	7		

<Portrait model>

Division of A and B areas

B area: Active area

Dimensional ratio between A and B areas: 1: 4: 1

(Refer to the left figure)

(30/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

12.2 Screen and Other Appearance

Testing conditions

Observation distance: 30 cm

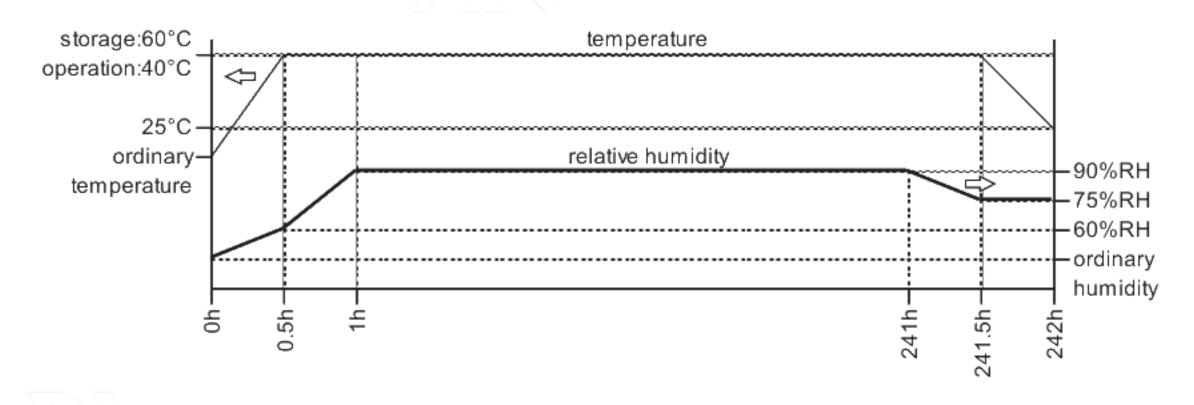
Illuminance: 1200 \sim 2000 lx

	Item	Criteria	Remark
	Flaw	Ignore invisible defect when the backlight is on.	Applicable area: Active area only
١	Stain		(Refer to the section 3.2 Outward Form)
rize	Dirt		
ola	Dirt Bubble Dust		
-	Dust		
	Dent		
S	case	No functional defect occurs	
L			
FF	PC	No functional defect occurs	

Item	Appearance	Criteria	
Glass chipping	Corner area	$a \le 3$ $b \le 3$ $c \le t$ (t: glass thickness) $a,b \le 0.5$ is acceptable $n \le 2$	Unit : mm
	Others Progressive crack	 a ≤ 5 b ≤ 1 c ≤ t (t: glass thickness) a,b≤0.5 is acceptable Maximum permissible number of chipping off on a side is 5. None 	Unit : mm

(31/40)

SPECIFICATIONS № 23TLM003


Issue:Oct.27,2023

13. Reliability Test

	Test item	Test condition	number of failures /
			number of examinations
	High temperature storage	Ta = 80°C 240hrs	0/3
	Low temperature storage	Ta = -30°C 240hrs	0/3
test	High temperature &	Ta = 60°C, RH = 90%, 240hrs	0/3
	high humidity storage	non condensing **	
urability	High temperature operation	Tp = 70°C 240hrs	0/3
ırak	Low temperature operation	Tp = -20°C 240hrs	0/3
<u> </u>	High temperature &	Tp = 40°C, RH = 90%, 240hrs	0/3
	high humidity operation	non condensing **	
	Thermal shock storage	-30°C ↔ 80°C (30min / 30min) 100cycles	(/0/3
	Electrostatic discharge test	Confirms to EIAJ ED-4701/300, C=200pF,R=0Ω,V=±200V	0/3
test	(Non operation)	Each 3 times of discharge on and power supply	
		and other terminals.	
vironmental	Surface discharge test	C=250pF, R=100Ω, V=±12kV	0/3
ΙĒ	(Non operation)	Each 5 times of discharge in both polarities	
ļ.		on the center of screen with the case grounded.	
env	Vibration test	Total amplitude 1.5mm, f=10~55Hz,	0/3
g		X,Y,Z directions for each 2 hours	
anic	Impact test	Use TOPPAN original jig (see next page) and	0/3
Mechanical		make an impact with peak acceleration of 1000m/s ² for 6 msec	
Ĭ		with half sine-curve at 3 times to each X, Y, Z directions	
		in conformance with JIS C 60068-2-27-2011.	
0	Packing vibration-proof test	Acceleration of 19.6m/s ² with frequency of 10→55→10Hz,	0 / 1 packing
king		X,Y, Zdirection for each 30 minutes.	
Packing test	Packing drop test	Drop from 75cm high.	0 / 1 packing
		1 time to each 6 surfaces, 3 edges, 1 corner	

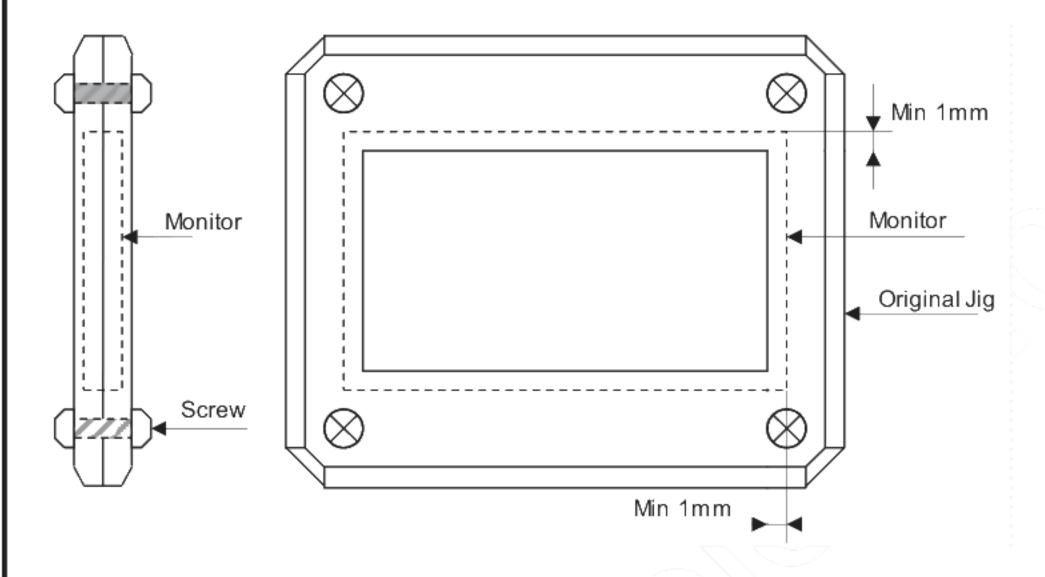
Note:Ta=ambient temperature

Tp=Panel temperature

(32/40)

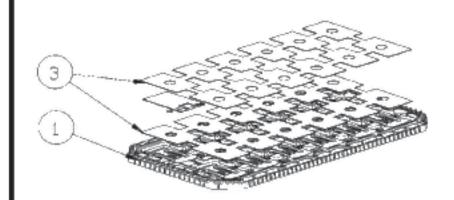
SPECIFICATIONS № 23TLM003

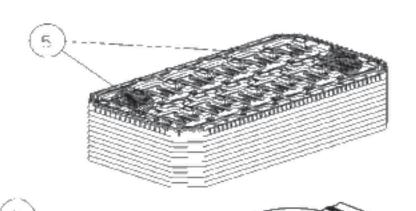
Issue:Oct.27,2023

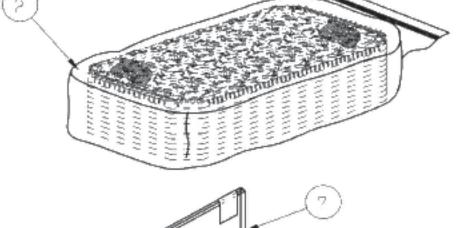

Table2. Reliability Criteria

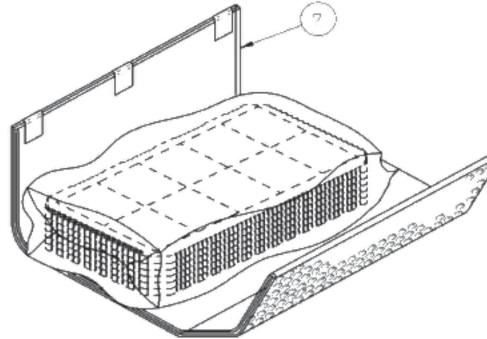
 $\mathbb{A}^{\dot{}}$

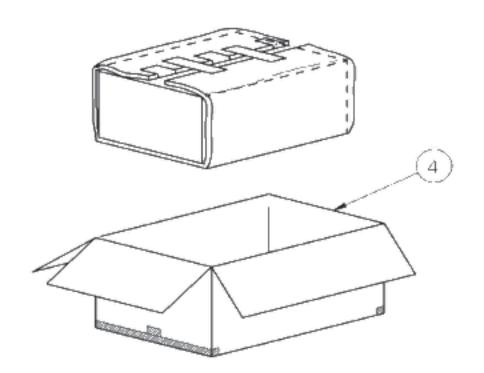
The parameters should be measured after leaving the monitor at the ordinary temperature for 24 hours or more after the test completion.


Item	Standard	Remark
Display quality	No visible abnormality shall be seen.	
	(Except for unevenness by Pol deterioration.)	
Contrast ratio	200 or more	Backlight ON


TOPPAN Original Jig




SPECIFICATIONS № 23TLM003


14. Packing Specifications

Remark: The return of packing materials is not required.

Packing item name		Specs., Material			
①	Tray	A-PET			
0	Sealing bag				
3	Foam sheet	Anti-static polyethilene			
4	Outer carton	Corrugated cardboard			
(3)	Drier Moisture absorber				
6	Packing tape				
0	B SHEET A	Anti-static air bubble sheet			
8	B SHEET B	Anti-static air bubble sheet			

Step1. Foam sheet is put on the tray.

Each product is to be placed in one of the cut-outs of the tray with the display surface facing downward.(12 products per tray)

Foam sheet is to be placed on the products in the tray.

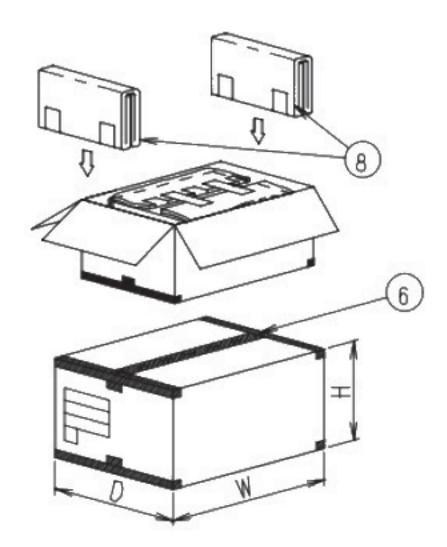
Step2. Each tray need to be same orientation respect to the tray below or above it and the trays be in a stack of 10.

One empty tray is to be put on the top of stack of 10 trays.

Step3. 2 packs of moisture absorbers are to be placed on the top tray as shown in the drawing. Put piled trays into a sealing bag.

Step4. Vacuum and seal the sealing bag with the vacuum sealing machine.

Step5. The stack of trays in the sealing bag is to be wrapped with B SHEET A.


Step6. The wrapped trays are placed in the outer carton.

Step7. B SHEET B are to be inserted into the outer carton with same orientation.

The outer carton is to be sealed in H-shape with packing tape as shown in the drawing.

Step8. The model number, quantity of products, and shipping date are to be printed on the outer carton.

If necessary, shipping labels or impression markings are to be put on the outer carton.

Dimension of extra outer carton				
D : Approx.	(356 mm)			
W : Approx.	(664 mm)			
H : Approx.	(182 mm)			
Quantity of products packed in one carton: 12				
Gross weight : Approx.	5.0 kg			

TOPPAN INC.

SPECIFICATIONS № 23TLM003

15. Handling Instruction

15.1 Cautions for Handling LCD panels

Caution

- Do not make an impact on the LCD panel glass because it may break and you may get injured from it. (1)
- If the glass breaks, do not touch it with bare hands. (2)(Fragment of broken glass may stick you or you cut yourself on it.
- If you get injured, receive adequate first aid and consult a medial doctor. (3)
- Do not let liquid crystal get into your mouth. (4) (If the LCD panel glass breaks, try not let liquid crystal get into your mouth even toxic property of liquid crystal has not been confirmed.)
- If liquid crystal adheres, rinse it out thoroughly. (5)(If liquid crystal adheres to your cloth or skin, wipe it off with rubbing alcohol or wash it thoroughly with soap. If liquid crystal gets into eyes, rinse it with clean water for at least 15 minutes and consult an eye doctor.
- If you scrap this products, follow a disposal standard of industrial waste (6)that is legally valid in the community, country or territory where you reside.
- Do not connect or disconnect this product while its application products is powered on. (7)
- Do not attempt to disassemble or modify this product as it is precision component. (8)
- (9)If a part of soldering part has been exposed, and avoid contact (short-circuit) with a metallic part of the case etc. about FPC of this model, please. Please insulate it with the insulating tape etc. if necessary. The defective operation is caused, and there is a possibility to generation of heat and the ignition.
- (10) Since excess current protection circuit is not built in this TFT module, there is the possibility that LCD module or peripheral circuit become feverish and burned in case abnormal operation is generated. We recommend you to add excess current protection circuit to power supply.
- (11) The devices on the FPC are damageable to electrostatic discharge, because the terminals of the devices are exposed. Wear grounded wrist-straps and use electrostatic neutralization blowers to prevent static charge and discharge when handling the TFT monitors. Designate an appropriate operating area, and set equipment, tools, and machines properly when handling this product.

Caution

This mark is used to indicate a precaution or an instruction which, if not correctly observed, may result in bodily injury, or material damages alone.

(33/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

15.2 Precautions for Handling

 Wear finger tips at incoming inspection and for handling the TFT monitors to keep display quality and keep the working area clean.
 Do not touch the surface of the monitor as it is easily scratched.

- Wear grounded wrist-straps and use electrostatic neutralization blowers to prevent static charge and discharge when handling the TFT monitors as the LED in this TFT monitors is damageable to electrostatic discharge. Designate an appropriate operating area, and set equipment, tools, and machines properly when handling this product.
- 3) Avoid strong mechanical shock including knocking, hitting or dropping to the TFT monitors for protecting their glass parts.Do not use the TFT monitors that have been experienced dropping or strong mechanical shock.
- 4) Do not use or storage the TFT monitors at high temperature and high humidity environment. Particularly, never use or storage the TFT monitors at a location where condensation builds up.
- Avoid using and storing TFT monitors at a location where they are exposed to direct sunlight or ultraviolet rays to prevent the LCD panels from deterioration by ultraviolet rays.
- 6) Do not stain or damage the contacts of the FPC cable.
 FPC cable needs to be inserted until it can reach to the end of connector slot.
 During insertion, make sure to keep the cable in a horizontal position to avoid an oblique insertion.
 Otherwise, it may cause poor contact or deteriorate reliability of the FPC cable.
- 7) The FPC cable is a design very weak to the bend and the pull as it is fixed with the tape.
 Do not bend or pull the FPC cable or carry the TFT monitor by holding the FPC cable.
- 8) Peel off the protective film on the TFT monitors during mounting process.
 Refer to the section 15.5 on how to peel off the protective film.
 We are not responsible for electrostatic discharge failures or other defects occur when peeling off the protective film.
- 9) It is recommended to employ the structure of which polarizer peripheral area of LCD panel being pressed by cushioning materials, in order to prevent a cause of display brightness unevenness.
- By reason of this model is made by thin glass, this model LCD is breakable.
 Please apply fitting of protection LCD surface. (ex. Covered acrylic board on LCD surface)

15.3 Precautions for Operation

- Since this TFT monitors are not equipped with light shielding for the driver IC,
 do not expose the driver IC to strong lights during operation as it may cause functional failures.
- In case of powering up or powering off this LCD module, be sure to comply the sequence as instructed in this specification.
- Do not plug in or out the FPC cable while power supply is switch on.
 Plug the FPC cable in and out while power supply is switched off.
- 4) Do not operate the TFT monitors in the strong magnetic field. It may break the TFT monitors.
- 5) Do not display a fixed image on the screen for a long time. Use a screen-saver or other measures to avoid a fixed image displayed on the screen for a long time. Otherwise, it may cause burn-in image on the screen due the characteristics of liquid crystal.

(30/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023

15.4 Storage Condition for Shipping Cartons

(Storage environment)

Temperature 0 to 40°C
 Humidity 60%RH or less

No-condensing occurs under low temperature with high humidity condition.

Atmosphere No poisonous gas that can erode electronic components and/or

wiring materials should be detected.

Time period 1 year

Unpacking To prevent damages caused by static electricity, anti-static precautionary measures

(e.g. earthing, anti-static mat) should be implemented. After unpack, keep product in the appropriate condition,

otherwise bubble seal of Protective film may be printed on Polarizer.

Maximum piling up 8 cartons (excluding the bottom)

*Conditions to storage after unpacking

(Storage environment)

Temperature 0 to 40°C
 Humidity 60%RH or less

No-condensing occurs under low temperature with high humidity condition.

Atmosphere No poisonous gas that can erode electronic components and/or

wiring materials should be detected.

Time period 1 year (Shelf life)

Others Keep/ store away from direct sunlight

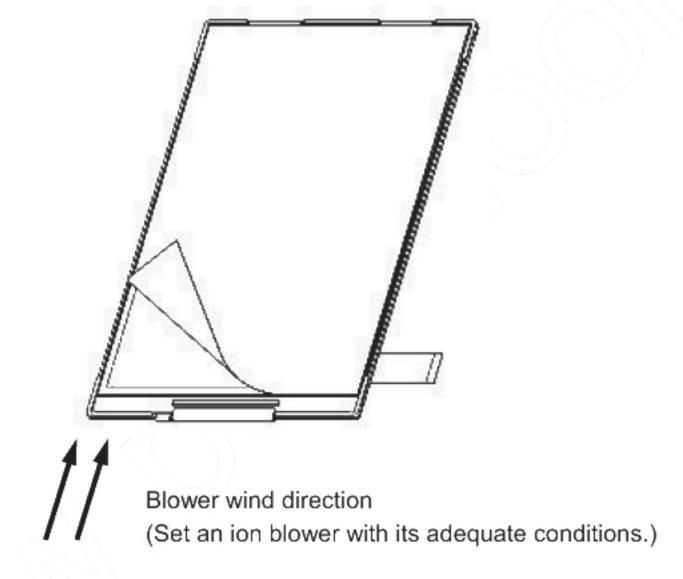
Storage goods on original tray made by TOPPAN.

TOPPAN INC.

SPECIFICATIONS IN 23 I LIVIU

15.5 Precautions for Peeling off the Protective film

The followings work environment and work method are recommended to prevent the TFT monitors from static damage or adhesion of dust when peeling off the protective films.


A) Work Environment

- a) Humidity: 50 to 70 %RH, Temperature15 to 27°C
- b) Operators should wear conductive shoes, conductive clothes, conductive finger tips and grounded wrist-straps. Use an electrostatic neutralization blower.
- Anti-static treatment should be implemented to work area's floor.
 Use a room shielded against outside dust with sticky floor mat laid at the entrance to eliminate dirt.

B) Work Method

The following procedures should taken to prevent the driver ICs from charging and discharging.

- a) Use an electrostatic neutralization blower to blow air on the TFT monitors to its lower left when FPC is placed at lower right. Optimize direction of the blowing air and the distance between the TFT monitors and the electrostatic neutralization blower.
- b) Put an adhesive tape (Scotch tape, etc) at the lower left corner area of the protective film to prevent scratch on surface of TFT monitors.
- Peel off the adhesive tape slowly (spending more than 2 secs to complete) by pulling it to opposite direction.

15.6 Warranty

TOPPAN is only liable to defective goods which is stored and used under the condition complying with this specifications and returned within 1 (one) year.

Warranty caused by manufacturing defect shall be conducted by replacement of goods or refundment at unit price.

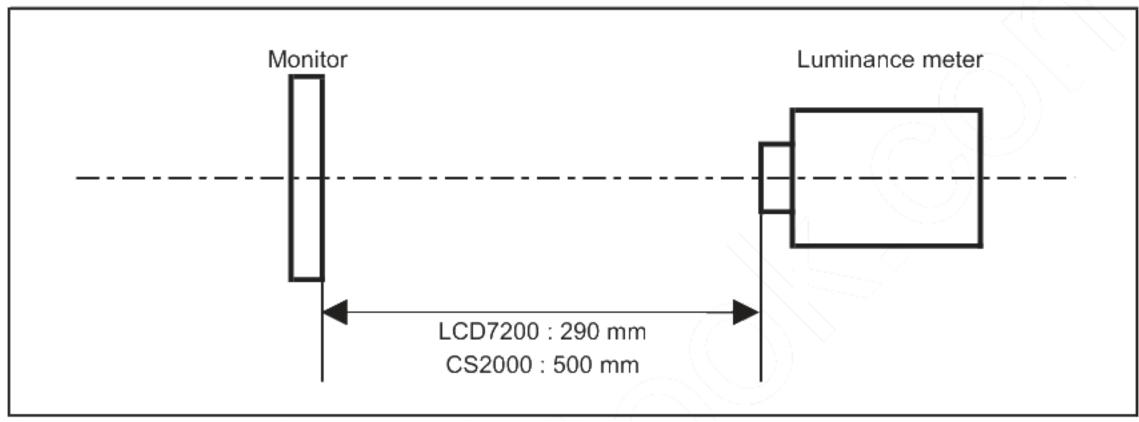
SPECIFICATIONS № 23TLM003

APPENDIX

Reference Method for Measuring Optical Characteristics and Performance

1. Measurement Condition

Measuring instruments: CS2000 (KONICA MINOLTA), LCD7200 (OTSUKA ELECTRONICS), EZcontrastXL88 (ELDIM)

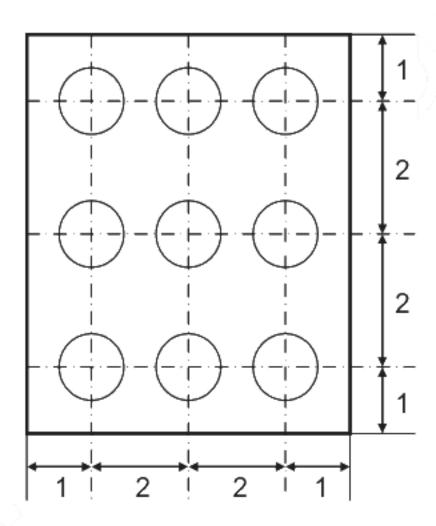

Driving condition: Refer to the section "Optical Characteristics"

Measured temperature: 25°C unless specified

Measurement system: See the chart below. The luminance meter is placed on the normal line of measurement system.

Measurement point: At the center of the screen unless otherwise specified

Dark box at constant temperature



^{*}Measurement is made after 30 minutes of lighting of the backlight.

Measurement point: At the center point of the screen

Brightness distribution: 9 points shown in the following drawing.

<Portrait model>

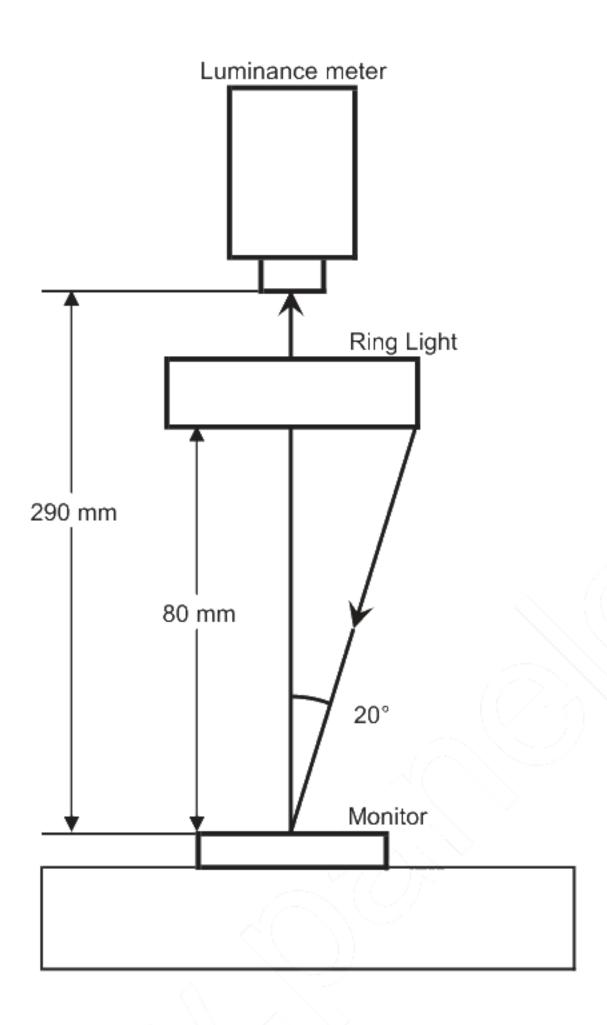
Dimensional ratio of active area

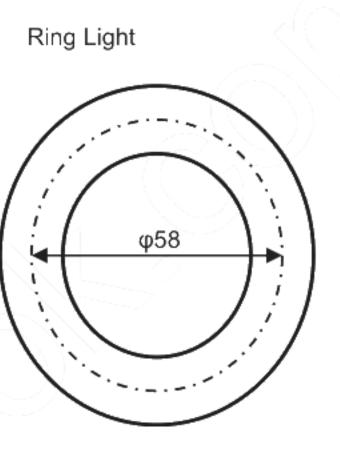
Backlight IL=10.0mA

(39/40)

SPECIFICATIONS № 23TLM003

Issue:Oct.27,2023


Measurement Condition (Contrast ratio Backlight OFF only)


Measuring instruments: LCD7200(OTSUKA ELECTRONICS), Ring Light (40,000 lx, φ58)

Driving condition: Refer to the section "Optical Characteristics"

Measured temperature: 25°C unless specified Measurement system: See the chart below.

Measurement point: At the center of the screen unless otherwise specified

(40/40)

At optimized VCOMDC

		SPECIFICATIONS № 23TLM003		Issue:Oct.27,202
Toot	Mathad			
Notice	Method Item	Test method	Measuring instrument	Remark
1	Response time	Measure output signal waveform by the luminance meter when raster of window pattern is changed from white to black and from black to white. Black White Black 100% 90% TOFF	LCD7200	Black display [Data]=00h White display [Data]=FFh TON Rise time TOFF Fall time
2	Contrast ratio	Measure maximum luminance Y1([Data]=FFh) and minimum luminance Y2([Data]=00h) at the center of the screen by displaying raster or window pattern. Then calculate the ratio between these two values. Contrast ratio = Y1/Y2 Diameter of measuring point: 7.8mmφ(CS2000) Diameter of measuring point: 3mmφ(LCD7200)	CS2000 LCD7200	
3	Viewing angle Horizontalθ Verticalφ	Move the luminance meter from right to left and up and down and determine the angles where contrast ratio is 10.	EZcontrastXL88	3
4	White chromaticity	Measure chromaticity coordinates x and y of CIE1931 colorimetric system at [Data] = FFh Color matching function: 2°view measurement angle: 1°	CS2000	
5	Center brightness	Measure the brightness at the center of the screen.	CS2000	
6	Brightness distribution	(Brightness distribution) = 100 x B/A % A: max. brightness of the 9 points B: min. brightness of the 9 points	CS2000	

Visually check burn-in image on the screen

after 2 hours of "window display" ([Data]=00h/FFh).

Burn-in