| SPEC.NO. | TQ3C-8EACO-E1CURO6-00 | | | | | | |----------|-----------------------|--|--|--|--|--| | DATE | December 26,2001 | | | | | | ## SPEC | п | \wedge | n | | | |----|----------|-----|--|--| | Н. | (1) | R | | | | T. | V | 7.1 | | | ## TYPE: KCG062HV1AA-A21 #### CONTENTS - 1. Application - 2. Construction and Outline - 3. Mechanical Specifications - 4. Absolute Maximum Ratings - 5. Electrical Characteristics - 6. Optical Characteristics - 7. Circuit Block Diagram - 8. Interface Signals - 9. Interface Timing Chart - 10. Data and Screen - 11. Input Timing Characteristics - 12. Supply Voltage Sequence Condition - 13. Backlight Characteristics - 14. Lot Number Identification - 15. Warranty - 16. Precautions for Use - 17. Reliability Data / Environmental Test - 18. Outline Drawing # TENTATIVE Issued Date: DEC. 28.2001 Hayato LCD Division KYOCERA CORPORATION KAGOSHIMA HAYATO PLANT LCD DIVISION This specification is subject to change without notice. Consult Kyocera before ordering. | Original | Designed by | :Engineering | Dept. | Confirmed by | :QA Dept. | |------------------|--------------|--------------|----------|--------------|------------| | Issue Data | Prepared | Checked | Approved | Checked | Approved | | December 26,2001 | T. Yamaguchi | 4. Matsumoto | H.Chno | S. Happahi | y, yoshija | ## Caution - 1. This Kyocera LCD module has been specifically designed for use only in electronic devices in the areas of audio control, office automation, industrial control, home appliances, etc. The modules should not be used in medical applications where module failure could result in physical harm or loss of life, and Kyocera expressly disclaims any and all liability relating in any way to the use of the module in such medical applications. - 2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, losses, damages, liabilities, awards, costs, and expenses, including legal fees, resulting from or arising out of Customer's use, or sale for use, of Kyocera modules in medical applications. - 3. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period. #### Revision Record | Date | | Design | ed by: | Engineering D | | Confirmed by | : QA Dept. | | |------|------|--------|--------|---------------|---------|--------------|------------|----------| | | Date | | Prepa | red | Checked | Approved | Checked | Approved | | | | | | | | | | | | Rev. | No. | Date | | Page | | Descripti | ons | | | | | | | | | | | | ## 1. Application This data sheet defines the specification for a $(640 \times R. G. B) \times 240$ dot, STN Transmissive color dot matrix type Liquid Crystal Display with CFL backlight. #### 2. Construction and Outline (640×R.G.B)×240 dots, COG type LCD with CFL backlight. Backlight system : Side-edge type CFL (1 tube). Inverter : Option. Recommended Inverter : PH-BLC08-K2 (HITACHI MEDIA ELECTRONICS) or equivalent. Polarizer : Non-Glare treatment. Additional circuit : Bias voltage circuit, Randomizing circuit This drawing is showing conception only. ## 3. Mechanical Specifications | ITEM | SPECIFICATION | UNIT | |------------------------|---|------| | Outline dimensions | 174.2 (W) × 73.4 (H) × 7.6(PCB and components not included.) (D) **Refer outline drawing in detail. | mm | | Effective viewing area | 149.8 (W) × 57.4 (H) | mm | | Dot number | (640×R.G.B) (W) × 240 (II) | Dots | | Dot size | 0.057 (W) × 0.211 (II) | mm | | Dot pitch | 0.077 (W) × 0.231 (II) | mm | | Display color *1 | White *2 | | | Base color *1 | Black *2 | | | Mass | 135 | g | - *1 Due to the characteristics of the LC material, the color vary with environmental temperature. - *2 Negative-type display Display data "II" : R. G. B Dots ON : White Display data "L" : R. G. B Dots OFF : Black ## 4. Absolute Maximum Ratings ## 4-1. Electrical absolute maximum ratings | ITEM | SYMBOL | MIN. | MAX. | UNIT | |--------------------------------|--------|------|------|------| | Supply voltage for logic | VDD | 0 | 6.0 | V | | Supply voltage for LCD driving | VCONT | 0 | VDD | V | | Input signal voltage *1 | Vin | 0 | VDD | V | | FRM frequency | fres | _ | 150 | llz | ^{*1} Input signal :CP, LOAD, FRM, DISP, D0∼D7 #### 4-2. Environmental absolute maximum ratings | ITEM | SYMBOL | MIN | MAX | UNIT | |--------------------------|--------|-----|-----|------------------------| | Operating temperature *1 | Тор | 0 | 50 | $^{\circ}\!\mathbb{C}$ | | Storage temperature *2 | Тято | -20 | 60 | °C | | Operating humidity *3 | Hop | 10 | *4 | %RH | | Storage humidity *3 | Иsто | 10 | *4 | %RH | | Vibration | _ | *5 | *5 | | | Shock | _ | *6 | *6 | | - *1 LCD's display quality shall not be guaranteed at the temperature range of : below 0℃ and upper 40℃. - *2 Temp. = -20°C < 48 h , Temp = 60°C < 168 h Store LCD panel at normal temperature/humidity. Keep it free from vibration and shock. LCD panel that is kept at low or high temperature for a long time can be defective due to the other conditions, even if the temperature satisfies standard. - *3 Non-condensation. - *4 Temp. $\leq 40^{\circ}\mathrm{C}$, 85% RH Max. Temp. $> 40^{\circ}\mathrm{C}$, Absolute Humidity shall be less than 85%RH at 40°C. *5 | Frequency | 10~55 Hz | Converted to acceleration value : | |-----------------|-------------|-----------------------------------| | Vibration width | 0.15 mm | $(0.3 \sim 9 \text{ m/s}^2)$ | | Interval | 10-55-10 Hz | 1 minute | - 2 hours in each direction $\rm X/Y/Z$ (6 hours as total) EIAJ ED-2531 - *6 Acceleration: 490m/s² Pulse width: 11 ms 3 times in each direction : $\pm X/\pm Y/\pm Z$. EIAJ ED-2531 #### 5. Electrical Characteristics | VDD = | 3.3V | \pm 0.3V | , Temp. | $= 0 \sim 50^{\circ}C$ | |-------|------|------------|---------|------------------------| |-------|------|------------|---------|------------------------| | ITEM | SYMBOL | CONDITION | MIN. | TYP. | MAX. | UNIT | |---|--------|------------------------------|--------|--------------|---------|------| | Supply voltage for logic | VDD | _ | 3. 0 | 3. 3 | 3. 6 | V | | LCD driving voltage *1 | Vop= | 0 °C | (1.20) | | | V | | | VCONT | 25 °C | (1.30) | (1.80) | (2.30) | V | | | | 50 °C | | _ | (2.40) | V | | Input voltage
(FRM, LOAD, CP, D0~D7, DISP) | W.i.e. | "II" level | 0.8VDD | | VDD | V | | (FKM, LOAD, CP, DU~D7, DISP) | Vin | "L" level | 0 | | 0. 2VDD | V | | Input current | Iin | Vin=VDD or VSS | -100 | | 100 | μΑ | | Rush current for logic | Irush | When rush
current happens | 0 | 3. 0A (Peak) | × 1ms | | | Clock frequency | fср | | 4. 03 | 4. 32 | 5. 88 | MHz | | Frame frequency *2 | f frm | | 70 | 75 | | Hz | | Current consumption
for logic | IDD | *3 | | (55) | (83) | mA | | Power consumption | Pdisp | | 5 | (182) | (274) | mW | - *1 Maximum contrast is obtained by adjusting the LCD driving voltage (Vop=Vcont) while at the viewing angle of $\theta=\phi=0^\circ$ - *2 In consideration of display quality, it is recommended that frame frequency is set in the range of 70-80Hz. When you have to use higher frame and clock frequencies, confirm the LCD's performan -ce and quality prior to finalizing the frequency values: Generally, as frame and clock frequencies become higher current consumption will get bigger and display quality will be degraded. ## 6. Optical Characteristics Temp. = 25℃ | ITEM | | SYMBOL | COND | ITION | MIN. | TYP. | MAX. | UNIT | |---------------|------------|--------|-----------------------------|---------|--------|---------|--------|-------| | Response | Rise | Tr | $\theta = \epsilon$ | 5 =0° | _ | (190) | (290) | ms | | time | Down | Td | 0 = 0 | 5 =0° | _ | (180) | (280) | ms | | Viewing angle | range | θ | CD > 0 | φ =0° | (-20) | _ | (30) | deg. | | | | φ | CR≥2 | 0 =0° | (-50) | | (50) | deg. | | Contrast rati | 0 | CR | 0 = 0 | 5 =0° | (15) | (30) | | | | Brightness(II | =5.0mA) | L | | | (110) | (160) | Q-° | cd/m² | | Chromaticity | I | X | 0 - | O° | (0.48) | (0.53) | (0.58) | | | coordinates | Red | У | $\theta = \phi = 0^{\circ}$ | (0. 29) | (0.34) | (0.39) | | | | | C | X | $\theta = \phi =$ | r -0° | (0.24) | (0. 29) | (0.34) | | | | Green | У | | 5 =0 | (0.44) | (0.49) | (0.54) | | | | D 1 | X | | , _O° | (0.11) | (0.16) | (0.21) | | | | B1ue | у | $\theta = q$ | p =0 | (0.09) | (0.14) | (0.19) | | | | Wile 2 + - | X | | t -0° | (0.25) | (0.30) | (0.35) | | | | White | у | U = Q | 5 =0° | (0.27) | (0.32) | (0.37) | | ^{*} Optimum contrast is obtained by adjusting the LCD driving voltage (Vop=Vcont) while at the viewing angle of $\theta=\phi=0^\circ$ ## 6-1. Contrast ratio is defined as follows: ## 6-2. Definition of Vop ## 6-3. Definition of response time ## 6-4. Definition of viewing angle ## 6-5. Measuring points - 1) Rating is defined as the average brightness inside the viewing area. - 2) 30 minutes after CFL is turned on. (Ambient Temp. =25°C) - 3) The inverter should meet the eccentric conditions; -Sine, symmetric waveform without spike in positive and negative. - 4) Measuring Inverter: PH-BLC08-K2(HITACHI MEDIA ELECTRONICS) ## 8. Interface signals #### 8-1. LCD | PIN NO. | SYMBOL | DESCRIPTION | LEVEL | |---------|--------|--|--------------------------| | 1 | FRM | Synchronous signal for driving scanning line | H | | 2 | LOAD | Data signal latch clock | $\Pi \rightarrow \Gamma$ | | 3 | CP | Data signal shift clock | $\Pi \rightarrow \Gamma$ | | 4 | DISP | Display control signal | H(ON), L(OFF) | | 5 | VDD | Power supply for logic | | | 6 | VSS | GND | | | 7 | VCONT | LCD adjust voltage | | | 8 | D7 | | | | 9 | D6 | | | | 10 | D5 | | | | 11 | D4 | Display data | II(ON), L(OFF) | | 12 | D3 | | | | 13 | D2 | | | | 14 | D1 | | | | 15 | D0 | | | | 16 | VDD | Power supply for logic | | | 17 | VDD | | | | 18 | VSS | GND | | | 19 | VSS | | | | 20 | VSS | | | LCD side connector : 08-6210-020-340-800 (ELCO) Recommended matching connector : 0.5mm pitch FFC or FPC ## 8-2. CFL | PIN No | SYMBOL | DESCRIPTION | LEVEL | |--------|--------|-----------------------------|-------| | 1 | HV | Power supply for CFL | AC | | 2 | NC | | | | 3 | GND | Ground line (from inverter) | | LCD side connector : BIIR-03VS-1 (JST) Recommended matching connector : SM02-(8.0)B-BIIS-1 (JST) ## 9. Interface Timing Chart - * The cycle of load signal should be stable and continuously applied without interruption. - * The above-mentioned timing chart shows a reference to set up a LCD module, not an electrical rating. ## 10. Data and Screen | | | | | | | | CI | IIP ARE | A | | | | | |-------------|------|----------|----------|----------|----------|----------|----------|--------------|------------|----------|----------------|------------|------------| | | 37.4 | | Y1 | | | ¥2 | | | <u>ү</u> 3 | | | Y640 | | | I | X1 | D7
R1 | D6
G1 | D5
B1 | D4
R2 | D3
G2 | D2
B2 | D1
R3 | D0
G3 | D7
B3 |
D2
R640 | D1
G640 | D0
B640 | | A P | | | | | | | | | | | | C | | | R
E
A | | | | | | | | | | | | | | | | X240 | | | | | | | \ | | | | | | | | | | | | | | 0- | | | | | | | ## 11. Input Timing Characteristics ## 11-1. Switchig characteristics Input Characteristics ; VDD = 3.3V \pm 0.3V, Temp. = 0 \sim 50 °C | ITEM | SYMBOL | MIN. | MAX. | UNIT | |------------------------------|--------|------|------|------| | CP Cycle *1 | tCCL | 170 | _ | ns | | CP "II" Pulse Width | tWCLH | 80 | _ | ns | | CP "L" Pulse Width | tWCLL | 80 | _ | ns | | CP Rise Up Time | trCP | | 20 | ns | | CP Fall Down Time | tfCP | | 20 | ns | | Data Set Up Time | tDS | 60 | | ns | | Data Hold Time | tDH | 60 | | ns | | LOAD "II" Pulse Width | tWLPII | 80 | | ns | | LOAD "L" Pulse Width | tWLPL | 400 | | ns | | LOAD Cycle *2 | tLCL | 500 | | ns | | CP Down→LOAD Down Delay Time | tCDLD | 100 | | ns | | LOAD Down→CP Rise Delay Time | tLDCR | 100 | | ns | | Input Signal Rise Up Time | tr | | 20 | ns | | Input Signal Fall Down Time | tf | | 20 | ns | | FRM Data Set Up Time | tFS | 120 | | ns | | FRM Data Hold Time | tFH | 30 | | ns | ^{*1} CP Cycle is adjust so that FRM signal is 75Hz. ^{*2} Load Cycle is const. ## 12. Supply Voltage Sequence Condition Always follow the power supply ON / OFF sequence as specified below. Unless you follow the power supply ON / OFF sequences, driving circuit in the LCD may irreparably break and / or DC voltage may be supplied to the LCD. DC voltage induces irreversible electrochemical reations on the screen and reduce LCD life. - * Input signal: CP, LOAD, FRM, DO~D7 Each signal (CP, LOAD, FRM) is constant. - * The above sequence should be designed as to keep each normal figure on condition that liquid crystal module is loaded on your system. - Control the supply voltage sequence not to float all signal line when the LCD panel is driving. #### 13. Backlight Characteristics #### CFL Ratings Temp. = 25℃ | ITEM | SYMBOL | MIN. | TYP. | MAX. | NOTE | |--------------------------------------|--------|------------|------------|------------|------| | Starting
discharge Voltage | VS | | | 965 Vrms. | 0 °C | | *1 | V S | | | 645 Vrms. | 25 ℃ | | Discharging tube current *2,*3 | IL | 2.0 mArms. | 5.0 mArms. | 6.0 mArms. | | | Discharging tube voltage | VL | | 395 Vrms. | | | | Operating life *4
(IL=5.0 mArms.) | Т | 36, 000 h | 54,000 h | | | | Operating frequency | F | 40 kHz | | 100 kHz | | - *1 The Non-load output voltage (VS) of the inverter should be designed to have some margin, because VS may increase due to the leak current which may be caused by wiring of CFL cables. (Reference value: 1255 Vrms MIN.) - *2 We recommend that you should set the discharging tube current at lower than typical value so as to prevent the heat accumulation of CFL tube from deteriorating a performance of the LCD. - *3 Do not apply more than 6.0mA discharging tube current. Because CFL maybe broken due to over current. - *4 When the illuminance or quantity of light has decreased to 50 % of the initial value. Average life time of CFL will be decreased when LCD is operating at lower and higher temperature. - * The inverter should meet the eccelentic conditions: sine, symmetric waveform without spike in positive and negative. #### 14. Lot Number Identification The lot number shall be indicated on the back of the backlight case of each LCD. | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | |------|-----------|---------------------|--|---|---| | 1 | 2 | 3 | 4 | 5 | 6 | | | | | | | | | JAN. | FEB. | MAR. | APR. | MAY | JUN. | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | | | | | JUL. | AUG. | SEP. | OCT. | NOV. | DEC. | | 7 | 8 | 9 | X | Y | ° Z | | | 1
JAN. | 1 2 JAN. FEB. 1 2 | 1 2 3 JAN. FEB. MAR. 1 2 3 | 1 2 3 4 JAN. FEB. MAR. APR. 1 2 3 4 | 1 2 3 4 5 JAN. FEB. MAR. APR. MAY 1 2 3 4 5 | ## 15. Warranty ## 15-1. Incoming inspection Please inspect the LCD within one month after your receipt. #### 15-2. Production Warranty Kyocera warrants its LCDs for a period of 12 months after receipt by the purchaser, and within the limits specified. Kyocera shall, by mutual agreement, replace or rework defective LCDs that are shown to be Kyocera's responsibility. #### 16. Precautions for use #### 16-1. Installation of the LCD - Please ground the mounting (screw) holes of an LCD module, in order to stabilize brightness and display quality. - 2. The LCD shall be installed so that there is no pressure on the LSI chips. - 3. The LCD shall be installed flat, without twisting or bending. - 4. The display window size should be the same as the effective viewing area. - In case you use outside frame of effective viewing area as outward appearance of your product, unevenness of its outward appearance is out of guarantee. - 6. Do not pull the CFL lead wires and do not bend the root of the wires. Housing should be designed to protect CFL lead wires from external stress. #### 16-2. Static Electricity 1. Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required. Operation should wear ground straps. #### 16-3. LCD Operation - The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images. - 2. Vop must be adjusted to optimize viewing angle and contrast. - 3. Operation of the LCD at temperature below the limit specified may cause image degradation and/or bubbles. It may also change the characteristics of the liquid crystal. This phenomenon may not recover. The LCD shall be operated within the temperature limits speci-fied. #### 16-4. Storage - 1. The LCD shall be stored within the temperature and humidity limits specified. Store in a dark area, and protected the LCD from direct sunlight or fluorescent light. - 2. The LCD should be packaged to prevent damage. #### 16-5. Screen Surface - DO NOT store in a high humidity environment for extended periods. Image degradation, bubbles, and/or peeling off of polarizer may result. - 2. The front polarizer is easily scratched or damaged. Prevent touching it with any hard material, and from being pushed or rubbed. - 3. The LCD screen may be cleaned with a soft cloth or cotton pad. Methanol, or Isopropyl Alcohol may be used, but insure that all solvent residue is removed. - 4. Water may cause damage or discoloration of the polarizer. Clean any condensation or moisture from any source immediately. - 5. Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizers. ## 17. Reliability Data / Environmental Test | TEST | TEST | TEST | RESULT | |--------------------------------------|--|-----------|---| | High Temp.
Atmosphere | 70°C | 240 h | Display Quality : No defect Display Function : No defect Current Consumption : No defect | | Low Temp.
Atmosphere | -20°C | 240 h | Low Temp. Bubble : None Solid Crystallization of Liquid Crystal : None Display Quality : No defect Display Function : No defect Current Consumption : No defect | | High Temp.
Humidity
Atmosphere | 40℃
90%RH | 240 h | Display Quality : No defect Display Function : No defect Peel-off of Organic Sealing : None Current Consumption : No defect | | Temp. Cycle | −20°C 0.5 h
R. T. 0.5 h
70°C 0.5 h | 10 cycles | Display Quality : No defect Display Function : No defect Peel-off of Organic Sealing : None Bubble on Cell : None | | High Temp.
Operation | 50°C
Vop | 240 h | Display Quality : No defect Display Function : No defect Current Consumption : No defect | ^{*} Each test item uses a test LCD only once. The tested LCD is not used in any other tests. ^{*} The LCD is tested in circumstances in which there is no condensation. ^{*} The tested LCD is inspected after 24 hours of storage at room temperature and room humidity after each test is finished. ^{*} The reliability test is not an out-going inspection. ^{*} The results of the reliability test are for your reference purpose only. The reliability test is conducted only to examine the LCD's capability. | SPEC.NO. | TQ3C-8EACO-E2CUR05-00 | |----------|-----------------------| | DATE | December 26,2001 | | - | ^ | - | | |------|---|---|--| | - k' | n | Ŋ | | | I. | V | R | | # KYOCERA INSPECTION STANDARD TYPE: KCG062HV1AA-A21 KYOCERA CORPORATION KAGOSHINA HAYATO PLANT LCD DIVISION | Original | Designed | by :Engineer | ing Dept. | Confirmed b | y :QA Dept. | |------------------|--------------|--------------|-----------|-------------|-------------| | Issue Data | Prepared | Checked | Approved | Checked | Approved | | December 26,2001 | T. Yamaguchi | 4. Matsumoto | H. Chno | S. Hayaski | y-gosluida | #### Revision Record | | | | Design | ed by: | Engineering D | | Confirmed by | : QA Dept. | |------|------|------|--------|--------|---------------|-----------|--------------|------------| | | Date | | Prepa | red | Checked | Approved | Checked | Approved | | | | | | | | | | | | Rev. | No. | Date | | Page | | Descripti | ons | | | | | | | | | | | | ## Visuals specification ## 1)Note | Item | | Note | |-------------------------------|---|---| | General | inspected, operating volume level where optimized of Display quality is appl (Bi-Level INSPECTION) 2. This inspection standar applied to any defect wand shall not be applied. 3. Should any defects which standard happen, additions by mutual agreement bet. 4. Inspection conditions Luminance : 5 Inspection distance : 3 Temperature : 2 | in this Inspection Standards are altage (Vop) shall be set at the contrast is available. ied up to effective viewing area. In additional standard shall be determined ween customer and Kyocera. In a constant of the sample t | | Definition of Inspection item | | The color of a small area is different from the remainder. The phenomenon does not change with voltage. The color of a small area is | | | | different from the remainder. The phenomenon changes with voltage. | | | Bubble, Dent) | Scratch, Bubble and Dent in the polarizer which can be observed in on / off state. | | Inspection item | Tudgaman | t etandard | | |--|---|--|---| | Inspection item Pinhole, Bright spot Black spot, Foreign particle | Juagemen | t standard | | | Foreign particle | | | | | | | | | | | | | | | | a | | | | | | d = (a + | b) / 2 | | | Category Size (mm) | Acceptab | le number | | | A $d \leq 0$. | 2 neg | glected | | | B $0.2 < d \leq 0.$ | 3 | 5 | | | $C 0.3 < d \leq 0.$ | 5 | 3 | | | D 0.5 < d | | 0 | | | | | | | Scratch, Foreign particle | | | | | | | W | L | | | | Width (mm) | ength (mm) | Acceptable No. | | | Width (mm) L A W ≤ 0.03 | | Acceptable No. | | | | | | | | | ength (mm) L ≤ 2.0 | neglected | | | A $W \le 0.03$ B $0.03 < W \le 0.1$ 2.0 | ength (mm) L ≤ 2.0 | neglected
neglected | | | A $W \le 0.03$ B $0.03 < W \le 0.1$ 2.0 | ength (mm) $-$ $L \leq 2.0$ $< L \leq 4.0$ | neglected
neglected | | Contrast variation | A $W \le 0.03$ B $0.03 < W \le 0.1$ 2.0 | ength (mm) $-$ $L \leq 2.0$ $< L \leq 4.0$ | neglected neglected 3 | | Contrast variation | A $W \le 0.03$ B $0.03 < W \le 0.1$ 2.0 | ength (mm) $-$ $L \leq 2.0$ $< L \leq 4.0$ | neglected neglected 3 | | Contrast variation | A $W \le 0.03$ B $0.03 < W \le 0.1$ 2.0 | ength (mm) $-$ $L \leq 2.0$ $< L \leq 4.0$ | neglected neglected 3 | | Contrast variation | A $W \le 0.03$ B $0.03 < W \le 0.1$ 2.0 | ength (mm) $-$ $L \leq 2.0$ $< L \leq 4.0$ | neglected neglected 3 | | Contrast variation | A $W \le 0.03$ B $0.03 < W \le 0.1$ 2.0 | ength (mm) $-$ $L \leq 2.0$ $< L \leq 4.0$ | neglected neglected 3 | | Contrast variation | A $W \le 0.03$ B $0.03 < W \le 0.1$ 2.0 | ength (mm) $-$ $L \leq 2.0$ $< L \leq 4.0$ | neglected neglected 3 0 According to Circular | | Contrast variation | A $W \le 0.03$ B $C = 0.03 < W \le 0.1$ D $A = 0.03 < W \le 0.1$ E $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ B $A = 0.03 < W \le 0.1$ A $A = 0.03 < W \le 0.1$ B W$ | ength (mm) L \leq 2.0 < L \leq 4.0 < L d = (a + | neglected a neglected According to Circular b) / 2 | | Contrast variation | A $W \le 0.03$ B $0.03 < W \le 0.1$ 2.0 | ength (mm) L \leq 2.0 < L \leq 4.0 < L d = (a + Acceptable) | neglected neglected 3 0 According to Circular | | Contrast variation | A | ength (mm) L \leq 2.0 L \leq 4.0 L L Acceptab neg | neglected neglected 3 0 According to Circular b) / 2 | | Inspection item | Judgement standard | | | | | | |--|--------------------|---------|-----------------|-------------------|----------------|--| | Polarizer (Scratch,
Bubble, Dent) | (1) Scratch W | | | | | | | | | | | | | | | | Widt | h (mm) | Len | gth (mm) | Acceptable No. | | | | A | W ≤ 0.1 | 5 | | neglected | | | | В 0.1 < | W ≤ 0.3 | | L ≦ 5.0 | neglected | | | | С | | 5.0 < | L | 0 | | | | D 0.3 < | < W | | | 0 | | | | (2) Bubble (dent) | | | | | | | | Category | | d = (a + b) / 2 | | | | | | Category | | | Acceptable number | | | | | A | | ≤ 0.2 | | lected | | | | В | 0.2 < d | | | 5 | | | | C D | 0.3 < d | | | 3 | | | | <u> </u> | 0.5 < d | | | U | |