

MODEL NO :	TM185VDSG06
MODEL VERSION:	00
SPEC VERSION:	V1.0
ISSUED DATE:	2019-11-20
Document number:	PDB-工业 1-19-C-136
	y Specification uct Specification

Customer:

Approved by	Notes

TIANMA Confirmed:

Prepared by	Checked by	Approved by
Han Yongqiang		

This technical specification is subjected to change without notice

Table of Contents

Tab	le of Contents	2
Red	cord of Revision	3
1	General Specifications	4
	Input/Output Terminals	
	2.1 TFT LCD Panel	
	2.2 Positions of Socket	6
3	Absolute Maximum Ratings	7
	Electrical Characteristics	
	4.1 Driving TFT LCD Panel	8
	4.2 Driving Backlight	
	4.3 Block Diagram	
5	Timing Chart	
	5.1 Timing Characteristics	
	5.2 Input Signal Timing Chart	
	5.3 Power On/Off Sequence	
	5.4 eDP SIGNAL TIMING SPECIFICATIONS	
6	Optical Characteristics	15
7	Environmental / Reliability Test	. 19
8	Mechanical Drawing	20
	8.1 Mechanical Drawing of LCM	. 20
9	Packing Drawing	23
	Precautions For Use of LCD Modules	23
	10.1 Handling Precautions	23
	10.2 Storage Precautions	. 24
	10.3 Transportation Precautions	. 24

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2019-11-20	Preliminary Specification Released.	Han Yongqiang

1 General Specifications

	Feature	Spec		
	Size (inch)	18.5		
Dienlay Spec	Resolution	1920(RGB) x 1080		
	Technology Type	SFT		
	Pixel Configuration	R.G.B. Vertical Stripe		
	Pixel Pitch (mm)	0.213 x 0.213		
Display Spec.	Display Mode	Transmissive, Normally Black		
	Polarizer pencil-hardness	3H (min.) [by JIS K5600]		
	Surface Treatment (Up Polarizer)	Antiglare		
	Viewing Direction			
	Gray Scale Inversion Direction			
	Luminance (cd/m2)	400 Typ.		
	Contrast ratio	1000:1 Typ.		
Optical Characteristics	Color gamut (%)	72 Typ.		
	Response time Ton+Toff (ms)	25 Typ.		
	Viewing angle R/L/U/D (Degree)	88/88/88 Typ.		
	LCM (W x H x D) (mm)	430.4 x 254.6 x 13.5 Typ.		
	Active Area (mm)	408.96 x 230.04		
Mechanical Characteristics	With /Without TSP	Without TSP		
Onaractonstros	Weight (g)	(1550) Typ.		
	Backlight LED replacement	Not Available		
	Interface	eDP 2lines, 8bit		
	Power supply voltage (V)	LCD panel: 5.0Typ.		
Electrical	Fower supply voltage (v)	Backlight: (12.0)Typ.		
Characteristics	Color Depth	16.7M		
	Backlight LED driver	Build in.		
	Power consumption (W)	(15.3) Typ.		

Note 1: The 12 o'clock direction is upper side of outline in "8 Mechanical Drawing".

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight max. tolerance: +10%

Note 4: Color gamut is against NTSC color space.

Note 5: Power consumption is defined at the maximum luminance control, with checkered flag pattern.

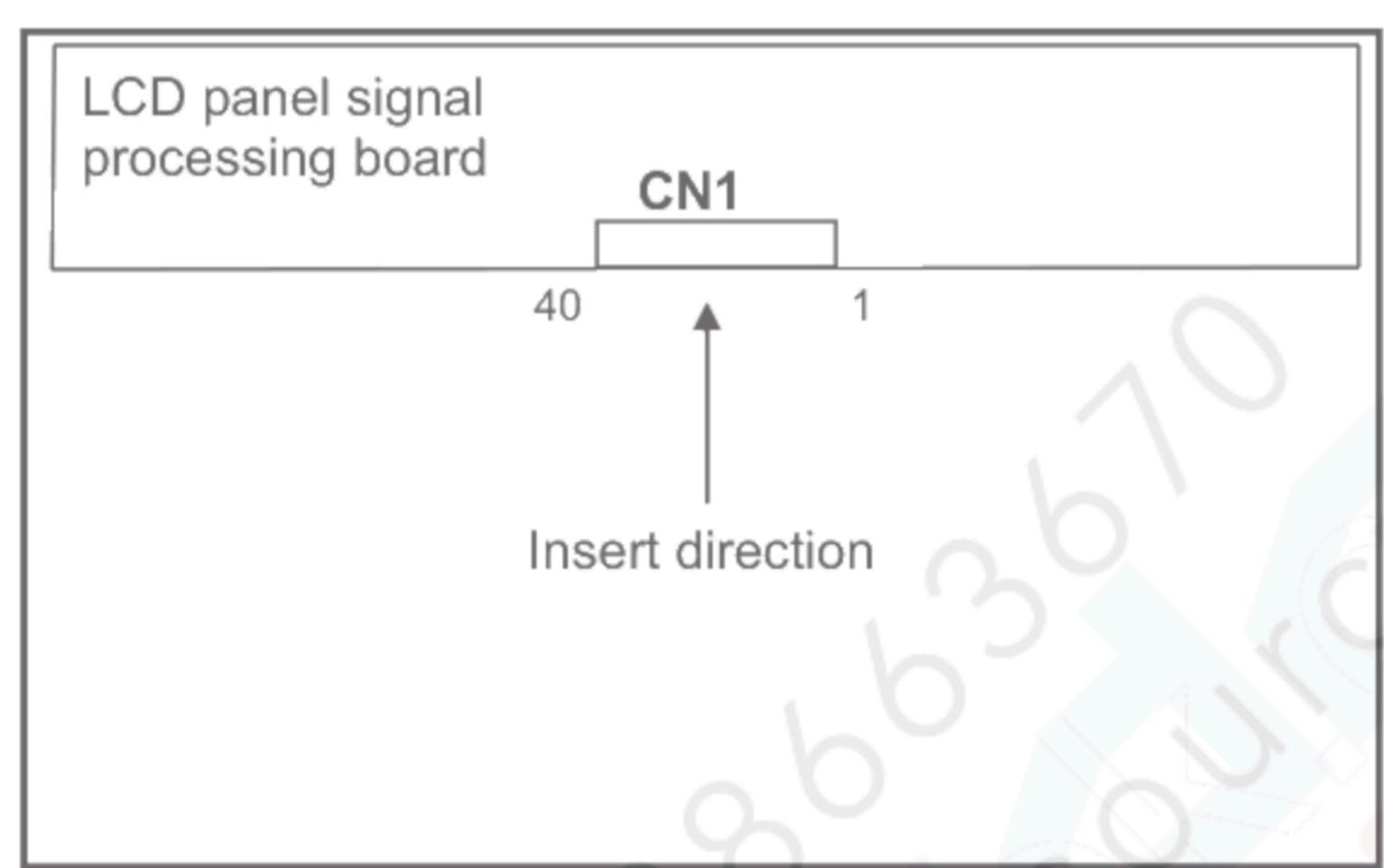
2 Input/Output Terminals

2.1 TFT LCD Panel

CN1 socket (LCD module side): 20455-040E (IPEX)

Adaptable plug: 20453-240T-11 (IPEX, Plug Set)

20454-240T (IPEX, HOUSING) or equivalent


Pin	Signal Name	Description	Remarks
1	N.C.		
2	N.C.		
3	N.C.		
4	N.C.	Keep this pin Open.	
5	N.C.		
6	N.C.		
7	N.C.		
8	H_GND	High Speed Ground	Note1
9	Lane1_N	Complement Signal Link Lane 1	-
10	Lane1_P	True Signal Link Lane 1	_
11	H_GND	High Speed Ground	Note1
12	Lane0_N	Complement Signal Link Lane 0	_
13	Lane0_P	True Signal Link Lane 0	-
14	H_GND	High Speed Ground	Note1
15	AUX_CH_P	True Signal Auxiliary Channel	-
16	AUX CH N	Complement Signal Auxiliary Channel	_
17	H_GND	High Speed Ground	Note1
18	VCC		
19	VCC		
20	VCC	Power supply for LCD panel signal processing board	Note1
21	VCC		
22	RSVD	Keep this pin Open.	_
23	GND		
24	GND	Cround	Ninted
25	GND	Ground	Note1
26	GND		
27	HPD	HPD Signal Pin	_
28	GNDB		
29	GNDB		
30	GNDB	LED driver ground	Note1
31	GNDB		
32	BRTC	Backlight ON/OFF control High or Open: ON Low: OFF	-
33	PWM	PWM signal input for dimming (Luminance control)	_
34	N.C.		
35	N.C.	Keep this pin Open.	
36	VDD		
37	VDD	Devices even by feet LED deliver	NI - t - 4
38	VDD	Power supply for LED driver	Note1
39	VDD		
40	N.C.	Keep this pin Open.	-

Note1: All H_GND, GND, GNDB, VCC and VDD terminals should be used without any non-connected lines

2.2 Positions of Socket

Rear side

3 Absolute Maximum Ratings

GND=0V

	Parameter	Symbol	Rating	Unit	Remarks				
Power supply	,	nal processing ard	VCC	-0.3 to +6.5	\ \ \				
voltage	LED	driver	VDD	-0.3to +15					
	Display signals			-0.3 to +4.0	V	Ta= 25°C			
Input voltage for signals			PWM	-0.3to +5.5	V				
	Function signa	I for LED driver	BRTC	-0.3to +5.5	V				
S	Storage temperature			-30 to +80	°C				
0		Front surface	TopF	-20 to +70	°C	Note1			
Operating t	emperature	Rear surface	TopR	-20 to +70	°C	Note2			
			6	≤ 95	%	Ta ≤ 40°C			
	Relative humidity			Relative humidity	Relative humidity ≤ 85		≤ 85	%	40°C < Ta ≤ 50°C
Note3			RH	≤ 55	%	50°C < Ta ≤ 60°C			
				≤ 36	%	60°C < Ta ≤ 70°C			
	Absolute humidity Note3	АН	≤ 70 Note4	g/m ³	Ta = 70°C				

Note1: Measured at LCD panel surface (including self-heat)

Note2: Measured at LCD module's rear shield surface (including self-heat)

Note3: No condensation

Note4: Water amount at Ta= 70°C and RH= 36%

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

(Ta= 25°C)

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage	VCC	4.5	5.0	5.5	V	_
Power supply current	ICC	_	420 Note1	820 Note2	mA	at VCC= 5.0V
Permissible ripple voltage	VRPC	_	_	100	mVp-p	for VCC Note3, Note4, Note5

Note1: Checkered flag pattern [by IEC 61747-6]

Note2: Pattern for maximum current

Note3: This product works if the ripple voltage levels are over the permissible values, but there might be noise on the display image.

Note4: The permissible ripple voltage includes spike noise.

Note5: The load variation influence does not include.

4.2 Driving Backlight

(Ta= 25°C)

							(Ta- 25°C
Paramete	Symbol	min.	typ.	max.	Unit	Remarks	
Power supply voltage		VDD	(10.8)	(12.0)	(13.2)	V	Note1
Power supply currer	nt Note2	IDD		(1,100)	(1350) Note3	mA	at VDD= 12.0V Note4
Permissible ripple voltage		VRPD			200	mVp-p	for VDD Note2, Note5, Note6
Input voltage for	High	VDFH1	2.0	_	5.25	V	
PWM signal	Low	VDFL1	0		0.4	V	
Input voltage for	High	VDFH2	2.0	_	5.25	V	
BRTC signal Low		VDFL2	0		0.8	V	
Input current for	High	IDFH1	_	-	200	μΑ	Note7
PWM signal	Low	IDFL1	-200	_	_	μΑ	
Input current for	High	IDFH2	_	_	200	μΑ	
BRTC signal	High	IDFL2	-200	-	_	μΑ	
PWM frequency		f _{PWM}	200	-	10k	Hz	Note8, Note9
PWM duty ratio		DR _{PWM}	1		100	%	Noto10 Noto11
PWM pulse width		tPWH	5	-	-	μs	Note10, Note11
LED life time		Hr	-	50000	-	Hour	Note 12

Note1: When designing of the power supply, take the measures for the prevention of surge voltage.

Note2: The power supply lines (VDD and GND) may have ripple voltage during luminance control of LED. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on.

Note3: This value excludes peak current such as overshoot current.

Note4: At the maximum luminance control.

Note5: This product works if the ripple voltage levels are over the permissible values, but there might be noise on the display image.

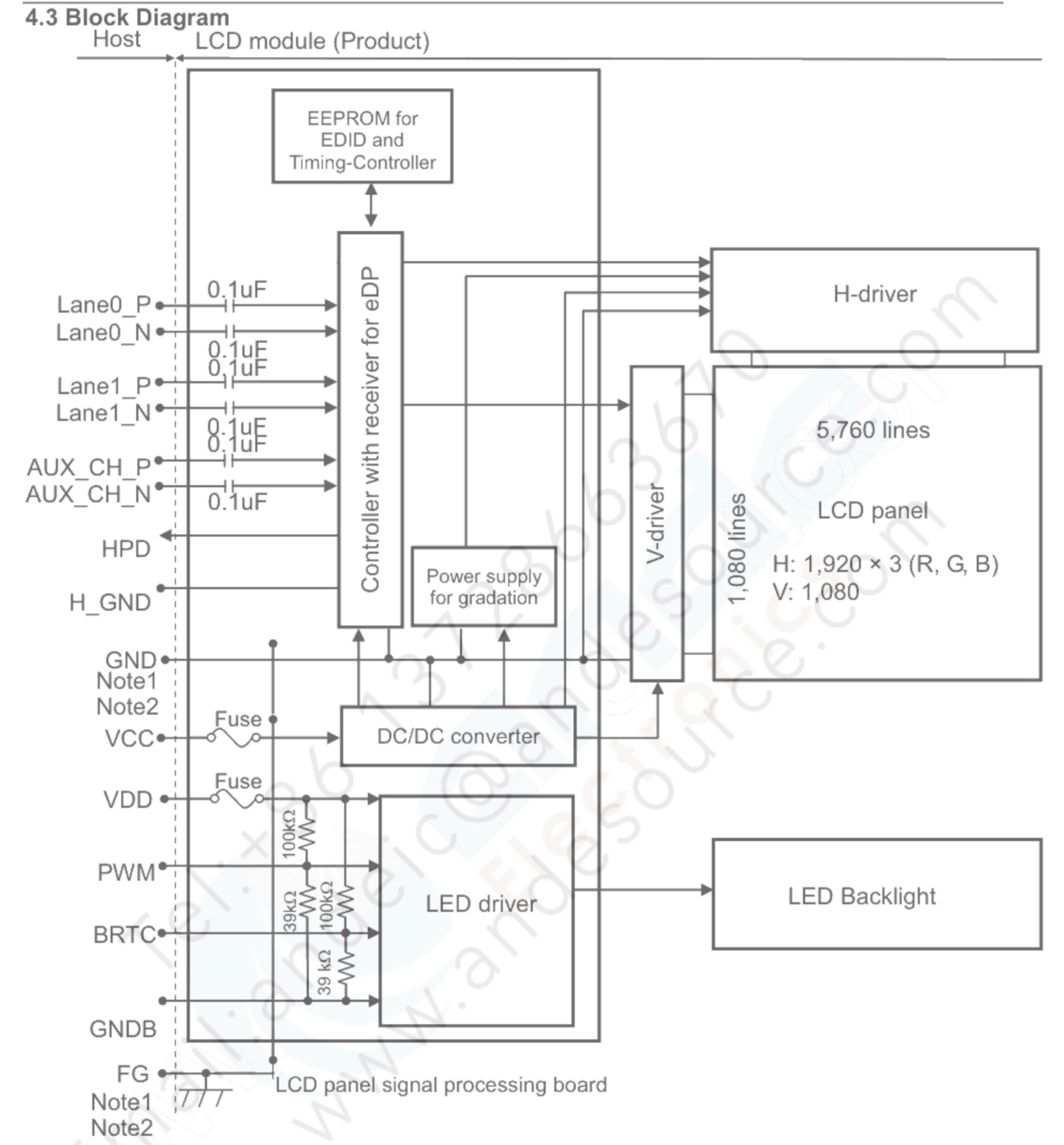
Note6: The permissible ripple voltage includes spike noise.

Note7: See "4.3 BLOCK DIAGRAM".

Note8: A recommended fPWM value is as follows.

$$f_{PWM} = \frac{2n-1}{4} \times fv$$

(n = integer, fv = frame frequency of LCD module)


Note9: Depending on the frequency used, some noise may appear on the screen, please conduct a thorough evaluation.

Note10: While the BRTC signal is high, do not set the tPWH (PWM pulse width) is less than minimum value. It may cause abnormal working of the backlight. In this case, turn the backlight off and then on again by BRTC signal.

Note11: Regardless of the PWM frequency, both PWM duty ratio and PWM pulse width must be always more than the minimum values.

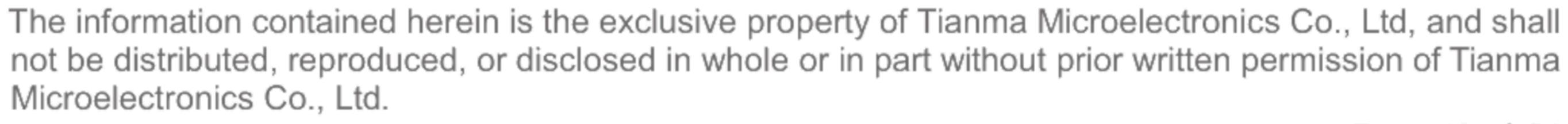
Note12: Optical performance should be evaluated at Ta=25℃. Only If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% of initial brightness. Typical operating life time is an estimated data.

Note1: Relation between H_GND (High Speed Ground), GND (Signal ground), GNDB (LED driver ground) and FG (Frame ground) in the LCD module are as follows.

3	3
H_GND- GND	Connected
H_GND- GNDB	Connected
H_GND- FG	Connected
GND- GNDB	Connected
GND- FG	Connected
GNDB- FG	Connected

Note2: H_GND, GND, GNDB and FG must be connected to customer equipment's ground,

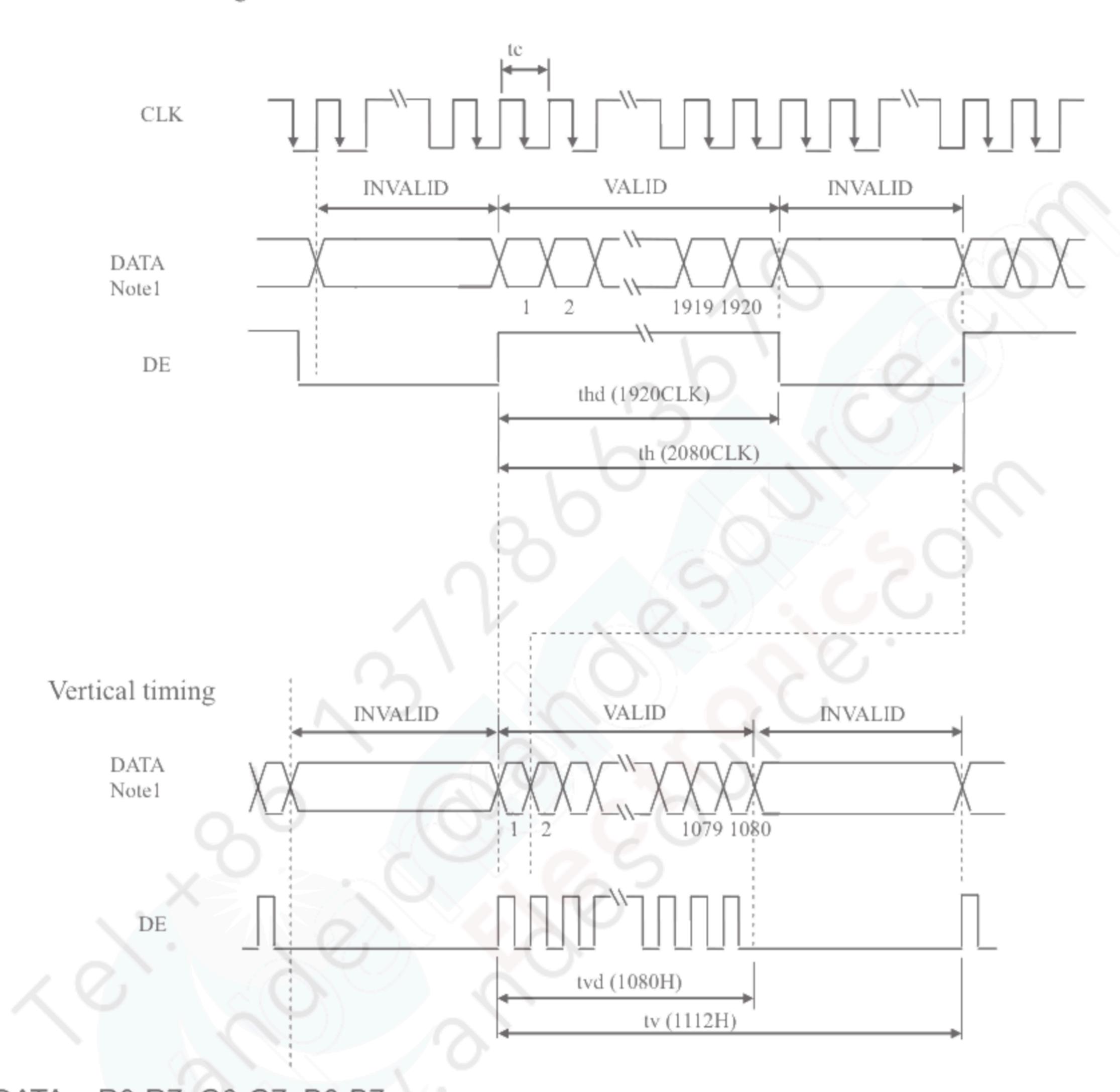
and it is recommended that these grounds to be connected together in customer equipment.


5 Timing Chart

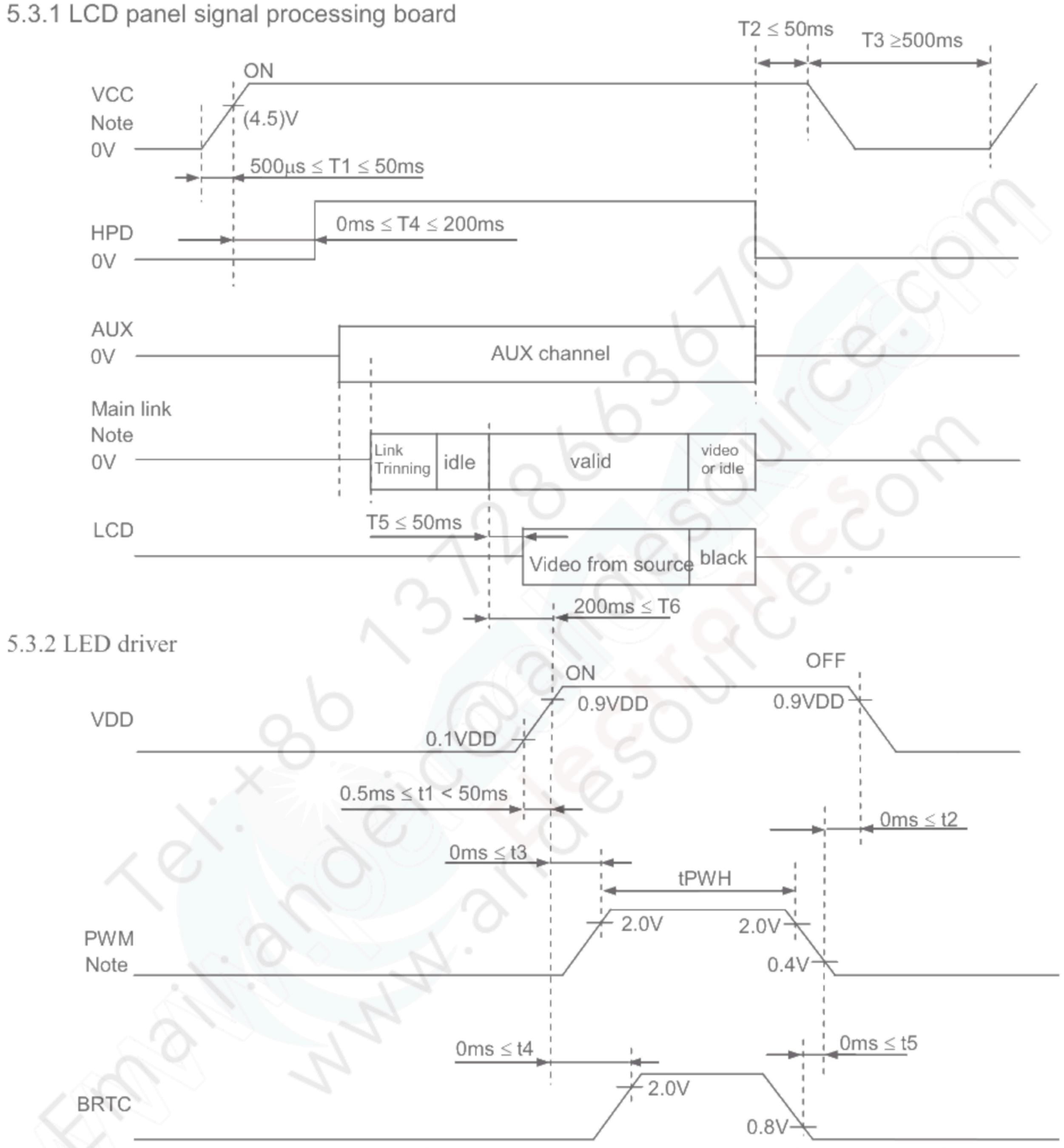
5.1 Timing Characteristics

(Note1)

Parameter			Symbol	min.	typ.	max.	Unit	Remarks	
	Frequency		1/tc	111.0	138.5	166.5	MHz		
CLK	Duty	ratio	-				_		
	Rise time	Rise time, Fall time					ns		
		Cycle	46	_	15.02	\ ·	μs	66.59 kHz	
	Horizontal		Cycle	Cycle	th	2,040	2,080	2,280	CLK
		Display period	thd		1,920			_	
DE	Vartical	Cuala	4	-	16.70		ms	50 00 Ll- /tun \	
	Vertical (One	Cycle	tv	1,111	1,112	1,212	Н	59.88Hz (typ.)	
	frame)	Display period	tvd		1,080		6	-	


Note1: Definition of parameters is as follows. tc= 1CLK, th= 1H

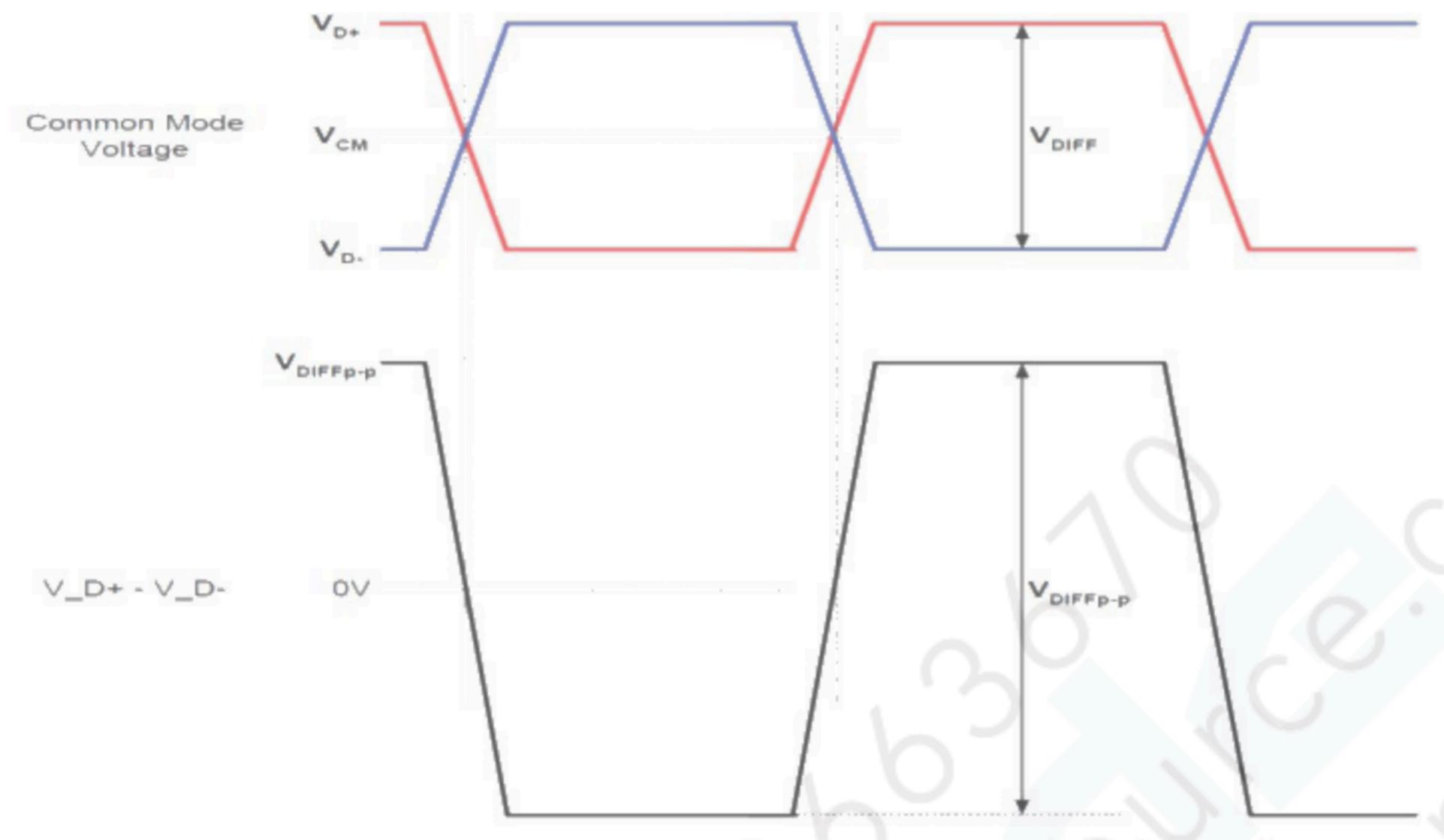
5.2 Input Signal Timing Chart


Horizontal timing

Note1: DATA = R0-R7, G0-G7, B0-B7

5.3 Power On/Off Sequence

Note1: If there is a voltage variation (voltage drop) at the rising edge of VCC below (4.5)V, there is a possibility that a product does not work due to a protection circuit.


Note2: Display signals (Lane0_P/N, Lane1_P/N) and function signals (AUX_CH_P/N, HPD) must be set to Low or High-impedance, except the VCC ON period (See above sequence diagram), in order to avoid the circuitry damage.

Note3: Depending on the setting of luminance control, it may cause display's flickering during the Power-On time.

5.4 eDP SIGNAL TIMING SPECIFICATIONS

5.4.1 Display port main link signal

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
Differential peak-to-peak input voltage	VDIFFp-p	100		1,320	mV	_
Rx input DC common mode voltage	VCM		0	6.	V	_
Jitter tracking bandwidth		10		J -	MHz	_
Link clock down spreading			0.5	_	%	_

5.4.2 Display port HPD signal

Description	Symbol	min.	typ.	max.	Unit	Remarks
Hot plug detect	HPD	2.0	_	2.5	V	I/O type: LVTTL

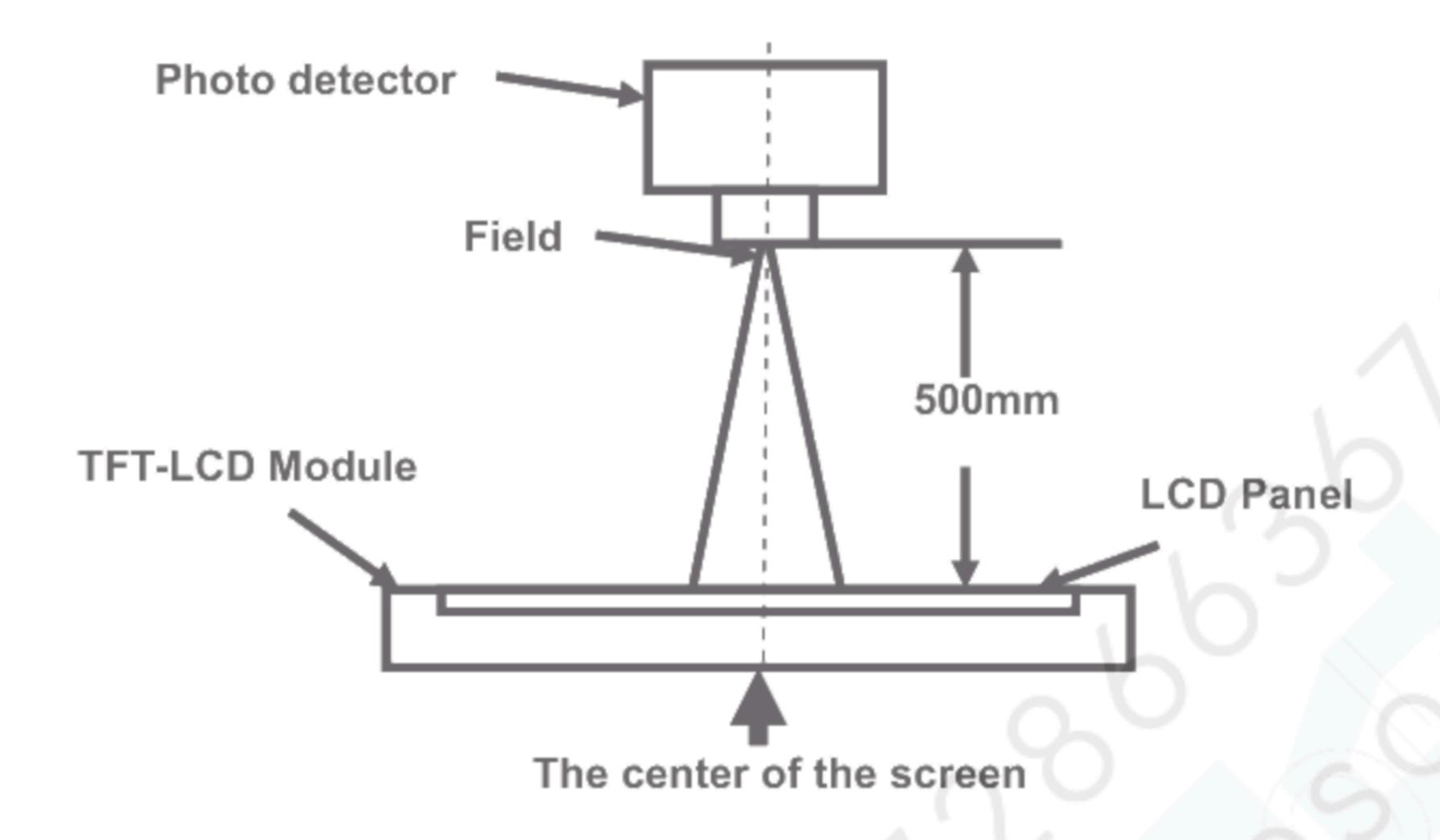
5.4.3 Display port AUX signal

Description	Symbol	min.	typ.	max.	Unit	Remarks
AUX differential peak-to-peak voltage When driving	_	0.4	_	1	V	_
AUX differential peak-to-peak voltage When receiving	_	0.25	_	1.36	V	_
AUX common-mode voltage When transmitting	_	-	0.15	_	V	_
AUX common-mode voltage When receiving	_	_	GND	_	V	_
AUX differential termination resistance	_	80	100	120	Ω	_
Unit interval	-	0.4	0.5	0.6	μs	_
Cycle-toCycle jitter time	-	-	_	0.04	UI	_

6 Optical Characteristics

Ta=25°C

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
\ \(\text{C} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		θТ		70	88	_	Degree	Note 2
		θВ	CR≧10	70	88	_		
view Ang	View Angles			70	88	_		
				70	88	_		
Contrast F	Ratio	CR	θ=0°	600	1000	-		Note1 Note3
Response	Time	T _{ON} +T _{OFF}	25℃	_	25	40	ms	Note1 Note4
	White	Х	Backlight is	(0.263)	(0.313)	(0.363)		Note5 Note1
	VVIIILE	У		(0.279)	(0.329)	(0.379)		
	Red	X			(0.630)			
Chromaticity		У		-	(0.335)			
Cilionaticity	Green	Y on	on	-	(0.290)			
	Green	У			(0.620)	0, .		
	Blue	X	, O		(0.155)	<u> </u>		
	Diue	у			(0.065)	-		
Uniformity		U		72	80	_	%	Note1 Note6
NTSC				65	72	_	%	Note 5
Luminan	ce	L		280	400	_	cd/m ²	Note1 Note7


Test Conditions:

- 1. The ambient temperature is 25±2℃.humidity is 65±7%. PWM duty ratio is 100%.
- 2. The test systems refer to Note 1 and Note 2.
- Contrast Ratio, Chromaticity, Uniformity, and Luminance is measured by SR-UL, SR-3AR or equivalent.
- 4. Response Time is measured by TRD-100, LCD-5200 or equivalent.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 20 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

Viewing angle is measured at the center point of the LCD by LCD5200.

The 12 o'clock direction is upper side of outline in "8 Mechanical Drawing".

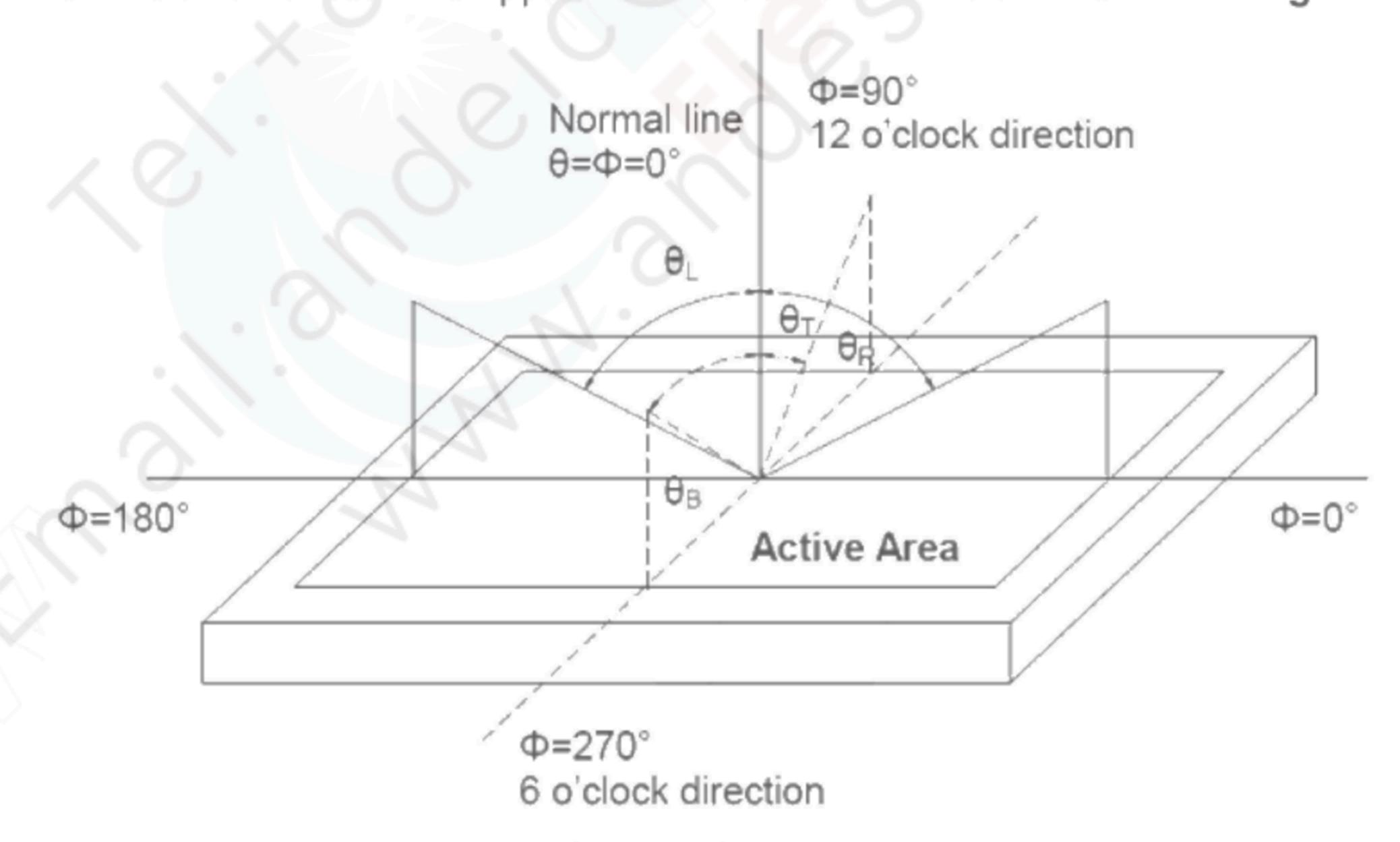
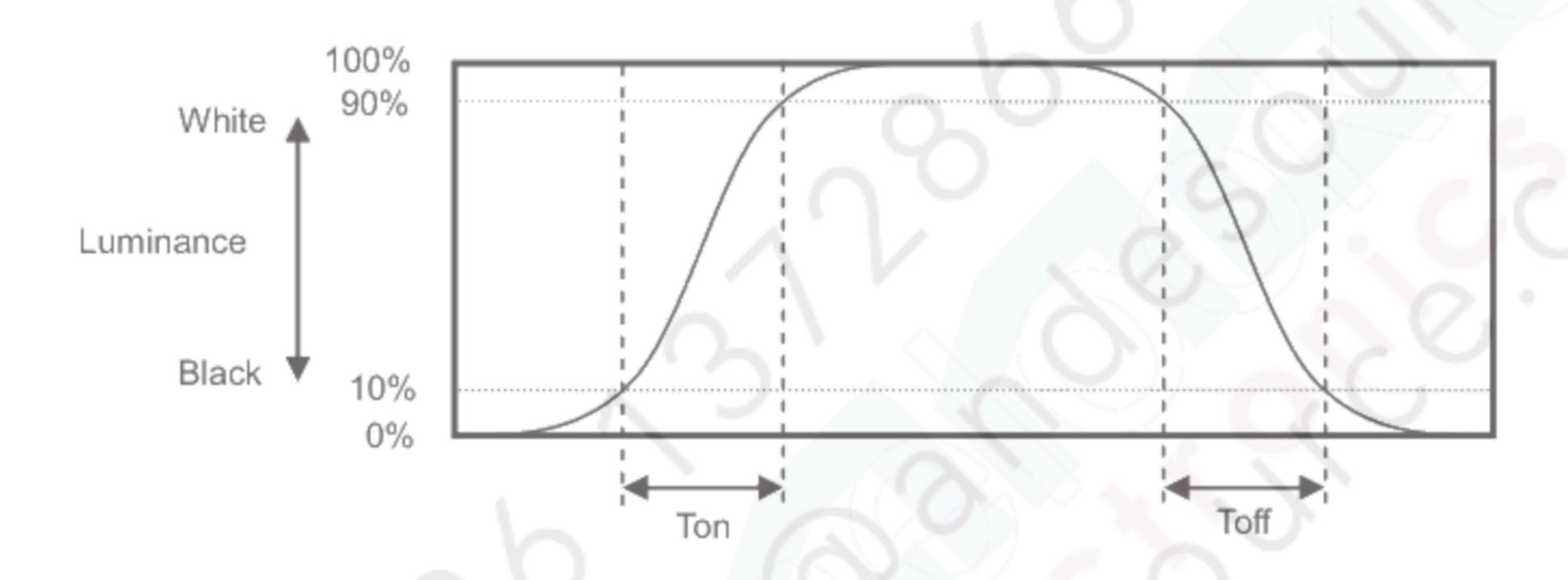


Fig. 1 Definition of viewing angle

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd.

Page 16 of 24


Note 3: Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "Black" state and "White" state. Rise time (Ton) is the time between photo detector output intensity changed from 10% to 90%. And Fall time (Toff) is the time between photo detector output intensity changed from 90% to 10%.

Product surface temperature: TopF= 29°C.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

The luminance uniformity is calculated by using following formula.

Luminance uniformity (LU)= Minimum luminance from ① to ⑤
Maximum luminance from ① to ⑤

The luminance is measured at near the 5 points shown below.

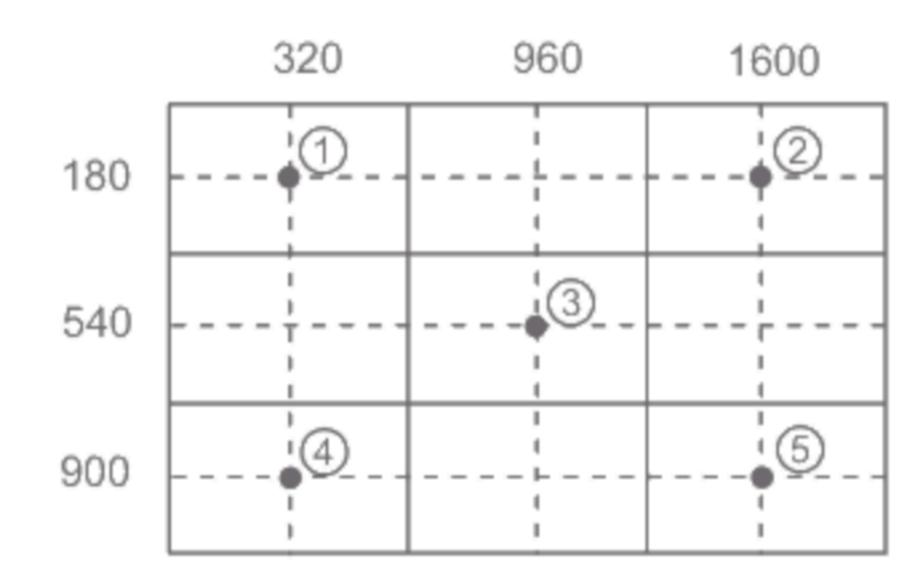
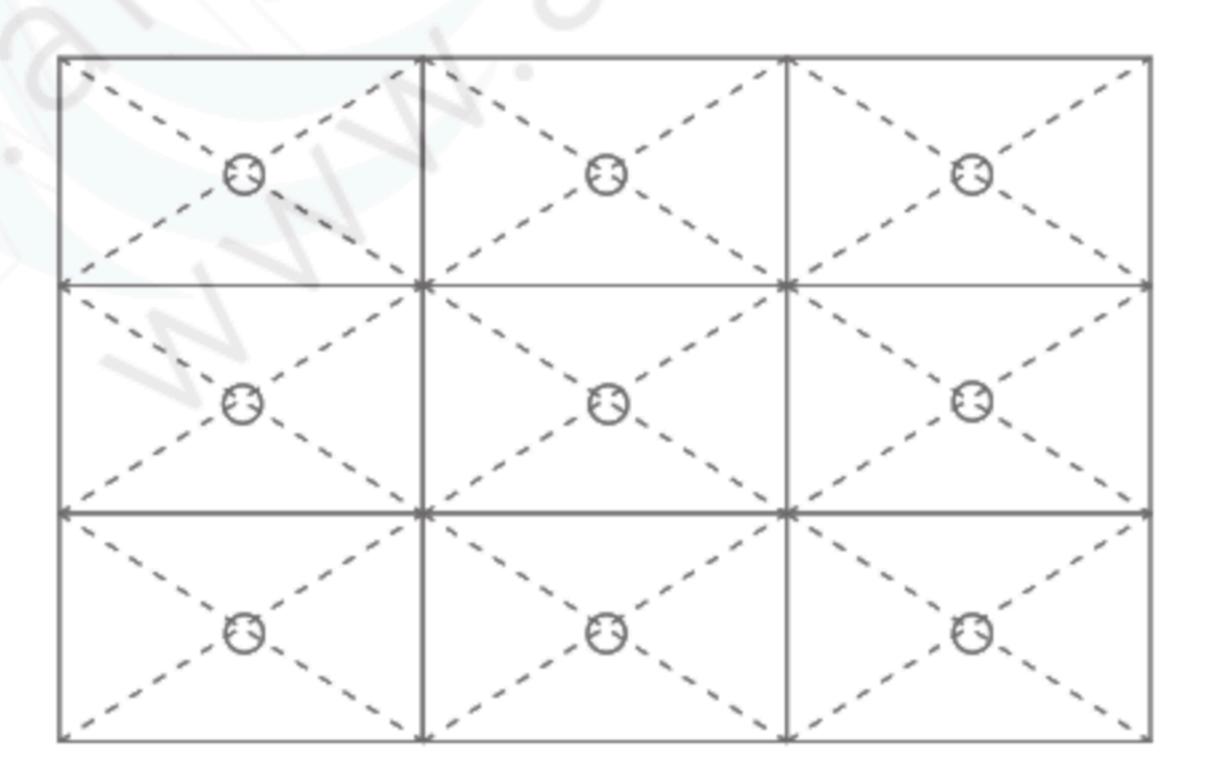


Fig. 2 Definition of uniformity

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.


7 Environmental / Reliability Test

No	Test Item	Condition	Judgment Note1
1	High Temperature Operation	 +70±3℃, 240hours Note2 Display data is white. 	
2	High Temperature & High Humidity Operation	1 +60±2°C, RH= 90%, 240hours 2 Display data is white.	
3	Thermal Shock (non-operation)	 30 ± 3°C30minutes +80 ± 3°C30minutes 100cycles, 1hour/cycle Temperature transition time is within 5 minutes. 	No display malfunctions
4	Heat Cycle (Operation)	①-20±3°C1hour 70±3°C1hour ②50cycles, 4hours/cycle ③Display data is White.	
5	ESD(Operation)	 150pF, R=150Ω,10kV 9 places on a panel surface Note3 10 times each point at 1 sec interval 	
6	Vibration (Non-operation)	14 bu times each direction	No display malfunctions No physical damages
7	Shock (Non-operation)	294m/ s2, 11ms ±X, ±Y, ±Z directions 3 times each direction	rao priyotodi darriagos

Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.

Note2: The maximum temperature front and rear surface of LCD module.

Note3: See the following figure for discharge points.

8 Mechanical Drawing of LCM

(front view)

shall The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd.

(rear view)

Mechanical Drawing of LCM

.1 1

shall The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd.

9 Packing Drawing

Parameter	Inner packing box	Unit
Size	550(W) × 408(H) × 451(D) (typ.)	mm
Weight	(1.55) (typ.)	kg
Total weight	9.695(typ.) (with 5 products)	kg

10 Precautions For Use of LCD Modules

10.1 Handling Precautions

- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when

peeling off this protective film since static electricity may be generated.

10.2 Storage Precautions

10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd.

Page 24 of 24